The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendri...The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendritic region. The single crystal alloy was deformed by grit blasting. A succeeding annealing under inert atmosphere at 1280 ℃ for different time led to the formation of recrystallized grains close to the grit blasting surface. It was found that the recrystallization depth and velocity in the dendrite arm were respectively deeper and faster than those in the interdendritic region where the Y-NiMo phase existed. The recrystallization process in the interdendritic region was significantly inhibited by the Y-NiMo precipitates. However, the pinning effect gradually weakened with the annealing time due to the dissolution of the Y-NiMo phase, and the recrystallization depth in the dendrite arm was deeper than that in the interdendritic region.展开更多
Metal atoms atomically dispersed on an inorganic metal‐based support compose a unique category of single atom catalysts(SACs)and have important applications in catalytic photoreduction reactions,including H_(2) evolu...Metal atoms atomically dispersed on an inorganic metal‐based support compose a unique category of single atom catalysts(SACs)and have important applications in catalytic photoreduction reactions,including H_(2) evolution reaction,CO_(2) reduction reaction,and N_(2) reduction reaction.In this minreview,we summarized the typical metal‐support interaction(M‐SI)patterns for successful anchoring of single‐atom metals on metallic compound supports.Subsequently,the contribution of the dispersed single metal atoms and M‐SI to photocatalytic reactions with improved activity,selectivity,and stability are highlighted,such as by accelerating charge transfer,regulating band structure of the support,acting as the reductive sites,and/or increasing catalytic selectivity.Finally,some challenges and perspectives of future development are proposed.We anticipate that this minireview will be a beneficial supplement for a comprehensive perception of metal‐based material supported SACs and their application in heterogeneous photo‐reductive catalysis.展开更多
The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-...The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-NiMo phase occurs at 900 and 1000 °C, which precedes recrystallization. The initial recrystallization temperature was between 1000 and 1100 °C. Cellular recrystallization was formed at 1100 and 1200 °C, which consisted of large columnar γ′ and fine γ + γ′. The dendrite arm closed to the interdendritic region may act as nucleation sites during initial recrystallization by a particle simulated nucleation mechanism at 1280 °C. The size of the grains first turned large and then became small upon the pressure while the recrystallization depth increased all the time.展开更多
The effect of different initial microstructures deftned by γ' precipitate morphology has been investigated at the creep/fatigue conditions of 900℃ and 500 MPa. The wave form of stress as a function of time for c...The effect of different initial microstructures deftned by γ' precipitate morphology has been investigated at the creep/fatigue conditions of 900℃ and 500 MPa. The wave form of stress as a function of time for cyclic load was of trapezoidal shape with a hold time of 10s at the upper stress level. The TEM was employed to examine the deformation process in strengthened γ' matrix in dependence of γ' precipitate morphology. The fracture lifetime and cycle number up to fracture were the criteria to evaluate the additional cyclic component efFect on the course of deformation展开更多
The recrystallization behavior of a single crystal nickel-base superalloy was investigated by shot peening and subsequent annealing. Two kinds of recrystallization microstructures, which are intensively dependent on t...The recrystallization behavior of a single crystal nickel-base superalloy was investigated by shot peening and subsequent annealing. Two kinds of recrystallization microstructures, which are intensively dependent on the annealing temperature, are shown in the nickel-base superalloy after shot peening and subsequent annealing. Surface recrystallized grains are obtained when the superalloy is annealed at solution treatment temperature. The nucleation of recrystallization originates from the dendritic core, where rapid dissolution of γ' particles occurs. Cellular recrystallization is observed after annealing at lower temperatures. Cellular structures induced by high diffusivity of the moving boundary and more γ' particles dissolution led by residual stress are developed from the surface region. Recrystallized kinetics of the shot-peened alloy annealed at 1050°C accords with the Johnson-Mehl-Avrami-Kolmogorov equation. The low Avrami exponent is caused by the inhomogeneous distribution of stored energy, the decreasing of stored energy during recovery, and the strong resistance of boundary migration by γ' particles.展开更多
The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low...The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃.展开更多
A single crystal Ni-based superalloy AM3 was processed at withdraw rates of 3.5, 10, 50, 100, 200, and 500 μm·s-1, respectively.The as-cast microstructures and solidification segregation ratio were characterized...A single crystal Ni-based superalloy AM3 was processed at withdraw rates of 3.5, 10, 50, 100, 200, and 500 μm·s-1, respectively.The as-cast microstructures and solidification segregation ratio were characterized with various withdraw rates.The shape and size of carbide microstructures were determined.As expected, the primary and secondary dendrite arm spacings (PDAS and SDAS) decrease with the increase of withdraw rate.The highest volume fraction of eutectic γ/γ' is observed at the 100 μm·s-1 withdraw rate.The volume fraction of eutectic γ/γ' does not appear to be a strong function of the withdraw rate.With increasing withdraw rate, interface morphologies change in the sequence of planar, cellular, and dendrite.There is a general refinement of the microstructure as the withdraw rate increases.EPMA analysis showed that withdraw rate does not have obvious influence on the segregation of elements.展开更多
An anisotropic micromechanics model based on the equivalent inclusion method is developed to investigate the rafting direction of Ni-based single crystal superalloys. The micromechanical model considers actual cubic s...An anisotropic micromechanics model based on the equivalent inclusion method is developed to investigate the rafting direction of Ni-based single crystal superalloys. The micromechanical model considers actual cubic structure and orthogonal anisotropy properties. The von Mises stress, elastic strain energy density, and hydrostatic pressure in dif- ferent inclusions of micromechanical model are calculated when applying a tensile or compressive loading along the [001] direction. The calculated results can successfully pre- dict the rafting direction for alloys exhibiting a positive or a negative mismatch, which are in agreement with pervious experimental and theoretical studies. Moreover, the elastic constant differences and mismatch degree of the matrix and precipitate phases and their influences on the rafting direction are carefully discussed.展开更多
The possibility of a life prediction model for nickel base single crystal blades has been studied. The fatigue creep (FC) and thermal fatigue creep(TMFC) as well as creep experiments have been carried out with differe...The possibility of a life prediction model for nickel base single crystal blades has been studied. The fatigue creep (FC) and thermal fatigue creep(TMFC) as well as creep experiments have been carried out with different hold time of DD3. The hold time and the frequency as well as the temperature range are the main factors influencing the life. An emphasis has been put on the micro mechanism of the rupture of creep, FC and TMFC. Two main factors are the voiding and degeneration of the material for the cre...展开更多
The influence of Co, W and Ti on stress-rupture lives of a Ni-Cr-AI-Mo-Ta-Co-W-Ti single crystal nickel-base superalloy has been investigated using a L9 (34) orthogonal array design (OAD) by statistical analysis. ...The influence of Co, W and Ti on stress-rupture lives of a Ni-Cr-AI-Mo-Ta-Co-W-Ti single crystal nickel-base superalloy has been investigated using a L9 (34) orthogonal array design (OAD) by statistical analysis. At a selected composition range, Ti content was the most important factor to the effect of the stress-rupture lives and then followed by Co content. W content had the minimum effect on stress-rupture lives. The optimal alloy should contain 10 wt pct Co, 8 wt pct W and zero Ti. The optimized alloy also had good microstructural stability during thermal exposure at 870℃ for 500 h.展开更多
The mosaic structure in a Ni-based single-crystal superalloy is simulated by molecular dynamics using a potential employed in a modified analytic embedded atom method. From the calculated results we find that a closed...The mosaic structure in a Ni-based single-crystal superalloy is simulated by molecular dynamics using a potential employed in a modified analytic embedded atom method. From the calculated results we find that a closed threedimensional misfit dislocation network, with index of (011){100} and the side length of the mesh 89.6A, is formed around a cuboidal γ′ precipitate. Comparing the simulation results of the different mosaic models, we find that the side length of the mesh only depends on the lattice parameters of the γ and γ′ phases as well as the γ/γ′ interface direction, but is independent of the size and number of the cuboidal γ′ precipitate. The density of dislocations is inversely proportional to the size of the cuboidal γ′ precipitate, i.e. the amount of the dislocation is proportional to the total area of the γ/γ′ interface, which may be used to explain the relation between the amount of the fine γ′ particles and the creep rupture life of the superalloy. In addition, the closed three-dimensional networks assembled with the misfit dislocations can play a significant role in improving the mechanical properties of superalloys.展开更多
This paper mainly concentrates on design of improved controller and its implementation based on single phase synchronous reference frame theory (SRFT) for Dynamic Voltage Restorer (DVR) compensating voltage sag partic...This paper mainly concentrates on design of improved controller and its implementation based on single phase synchronous reference frame theory (SRFT) for Dynamic Voltage Restorer (DVR) compensating voltage sag particularly for nonlinear load. In case of single phase distribution line with nonlinear load, the complexity of controller’s design becomes more serious issue. The present single phase and/or three phase theories applicable to DVR shows poor response to restore voltage sag in case of nonlinear load due to presence of harmonics. Hence restoration of voltage sag in single phase nonlinear load connected system has been a serious concern. Therefore, new controller for DVR has been proposed incorporating effective design concept for fundamental component extraction in case of nonlinear load. The single phase SRFT based main controller for DVR works on two separate closed path viz. feed forward path for quick transient response and feedback path for reducing the steady state error. Moreover, pre-sag mitigation strategy of DVR has been adapted through these two aforementioned paths. Complete design of proposed controller is based on phasor analysis. It also consist of proportional integral (PI) controller to reduce the error in the DC-link voltage during compensation time. The controller performance has been verified in MATLAB Simulink for both types (linear and nonlinear) of load. The results obtained indicates that the proposed controller is effective in its performance.展开更多
The modified single base propellant samples were prepared by impregnating blasting oil into single base grains and deactivating deterrent in water medium. The concentration distribution of functional compositions in t...The modified single base propellant samples were prepared by impregnating blasting oil into single base grains and deactivating deterrent in water medium. The concentration distribution of functional compositions in this propellant was determined by using FTIR micro-spectroscopy. Its combustion performance was investigated by means of closed-bomb and interior ballistic tests. The results show that the concentration of NG distributes parabolically along the radius and the concentration of NA decreases from the surface to the centre exponentially. The deeper the NG impregnates, the slower the NA concentration decreases, the stronger the progressive combustion is and the better the interior ballistic performance is. When the depth corresponding to maximum NG concentration is about 1/2 of the web and the NA decreases slowly, the progressive combustion is the strongest and the interior ballistic performance is the best.展开更多
An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1...An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1) random solid solutions are calculated as a function of the concentrations of Co and A1. The calculated SFEs decrease with increasing concentrations of Co and A1, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ(Ni) may be improved by the addition of Co.展开更多
By means of pre-compressive creep treatment, the cubic γ′ phase in a nickel base single crystal superalloy is transformed into the P-type rafted structure. And the influence of the pre-compressive creep on the inter...By means of pre-compressive creep treatment, the cubic γ′ phase in a nickel base single crystal superalloy is transformed into the P-type rafted structure. And the influence of the pre-compressive creep on the internal friction stress and creep lifetimes of the superalloy are investigated by means of the measurement of the creep curves and microstructure observation. Results show that, compared to the P-type structure alloy, the full heat treated state alloy displays a bigger internal friction stress value of dislocation motion during steady state creep and a longer creep lifetimes. The creep activation energies of the full heat treated and P-type structures alloys are measured to be 462 kJ/mol and 412 kJ/mol, respectively. Thereinto, the P-type rafted γ′ phase in the alloy is transformed into the N-type structure during tensile creep. And the N-type γ′ phase transformed from the P-type structure displays a shorter size in length, this is a main reason of the P-type structure alloy possessing a shorter creep lifetimes due to creep dislocation moving easily over the rafted γ′ phase.展开更多
A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP...A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.展开更多
A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique desi...A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique design of the pattern inversion is used, and the pattern is transferred to be negative in the electron-beam lithography step. The oxidation process is used to form the silicon oxide tunneling barriers, and to further reduce the effective size of the quantum dot. Combinations of these methods offer advantages of good size controllability and accuracy, high reproducibility, low cost, large-area contacts, allowing batch fabrication of single electron transistors and good integration with a radio-frequency tank circuit. The fabricated single electron transistor with a quantum dot about 50nto in diameter is demonstrated to operate at temperatures up to 70K. The charging energy of the Coulomb island is about 12.5meV.展开更多
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is ...We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.展开更多
An analytical method to investigate the morphological evolution of the cellular mi-crostructure is explored and proposed. The method is essentially based on the Es-helby 's micromechanics theory, and it is extende...An analytical method to investigate the morphological evolution of the cellular mi-crostructure is explored and proposed. The method is essentially based on the Es-helby 's micromechanics theory, and it is extended so as to be applied for a material system containing inclusions with high volume fraction, by employing the average stress field approximation by Mori and Tanaka. The proposed method enables us to discuss a stable shape of precipitate in the material system, which must be influenced by many factors: e.g., volume fraction of precipitate; Young's modulus ratio and lattice misfit between matrix and precipitate; external stress field in multiaxial state; and heterogeneity of plastic strain between matrix and precipitate. A series of numerical calculations were summarized on stable shape maps. The application of the method to predict the γ' rafting in superalloys during creep showed that the heterogeneity of plastic strain between matrix and precipitates may play a significant role in the shape stability of the precipitate. Furthermore, it was shown that the method was successfully applied to estimate the morphology of the cellular microstructure formed in CMSX-4 single crystal Ni-based superalloy.展开更多
Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain...Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain rates at 950 degrees C. The cyclic strain rates were chosen as 1.0 x 10(-2), 1.33 x 10(-3) and 0.33 x 10(-3) s(-1). The octahedral slip systems were confirmed to be activated on all the specimens. The experimental result shows that the fatigue behavior depends an the crystallographic orientation and cyclic strain rate. Except [0 0 1] orientation specimens, it is found from the scanning electron microscopy(SEM) examination that there are typical fatigue striations on the fracture surfaces. These fatigue striations are made up of cracks. The width of the fatigue striations depends on the crystallographic orientation and varies with the total strain range. A simple linear relationship exists between the width and total shear strain range modified by an orientation and strain rate parameter. The nonconformity to the Schmid law of tensile/compressive flaw stress and plastic behavior existed at 95 degrees C, and an orientation and strain rate modified Lall-Chin-Pope ( LCP) model was derived for the nonconformity. The influence of crysrallographic orientation and cyclic strain rate on the LCF behavior can be predicted satisfactorily by the model. In terms of an orientation and strain rate modified total strain range, a model for fatigue life was proposed and used successfully to correlate the fatigue lives studied.展开更多
基金Project (50971005) supported by the National Natural Science Foundation of China
文摘The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendritic region. The single crystal alloy was deformed by grit blasting. A succeeding annealing under inert atmosphere at 1280 ℃ for different time led to the formation of recrystallized grains close to the grit blasting surface. It was found that the recrystallization depth and velocity in the dendrite arm were respectively deeper and faster than those in the interdendritic region where the Y-NiMo phase existed. The recrystallization process in the interdendritic region was significantly inhibited by the Y-NiMo precipitates. However, the pinning effect gradually weakened with the annealing time due to the dissolution of the Y-NiMo phase, and the recrystallization depth in the dendrite arm was deeper than that in the interdendritic region.
文摘Metal atoms atomically dispersed on an inorganic metal‐based support compose a unique category of single atom catalysts(SACs)and have important applications in catalytic photoreduction reactions,including H_(2) evolution reaction,CO_(2) reduction reaction,and N_(2) reduction reaction.In this minreview,we summarized the typical metal‐support interaction(M‐SI)patterns for successful anchoring of single‐atom metals on metallic compound supports.Subsequently,the contribution of the dispersed single metal atoms and M‐SI to photocatalytic reactions with improved activity,selectivity,and stability are highlighted,such as by accelerating charge transfer,regulating band structure of the support,acting as the reductive sites,and/or increasing catalytic selectivity.Finally,some challenges and perspectives of future development are proposed.We anticipate that this minireview will be a beneficial supplement for a comprehensive perception of metal‐based material supported SACs and their application in heterogeneous photo‐reductive catalysis.
基金supported by National Natural Science Foundation of China (No. 50971005)
文摘The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-NiMo phase occurs at 900 and 1000 °C, which precedes recrystallization. The initial recrystallization temperature was between 1000 and 1100 °C. Cellular recrystallization was formed at 1100 and 1200 °C, which consisted of large columnar γ′ and fine γ + γ′. The dendrite arm closed to the interdendritic region may act as nucleation sites during initial recrystallization by a particle simulated nucleation mechanism at 1280 °C. The size of the grains first turned large and then became small upon the pressure while the recrystallization depth increased all the time.
文摘The effect of different initial microstructures deftned by γ' precipitate morphology has been investigated at the creep/fatigue conditions of 900℃ and 500 MPa. The wave form of stress as a function of time for cyclic load was of trapezoidal shape with a hold time of 10s at the upper stress level. The TEM was employed to examine the deformation process in strengthened γ' matrix in dependence of γ' precipitate morphology. The fracture lifetime and cycle number up to fracture were the criteria to evaluate the additional cyclic component efFect on the course of deformation
基金supported by the Major State Basic Research and Development Program of China (No.2010CB631206)the National Natural Science Foundation of China (No.50931004)the Foundation of State Key Lab for Advanced Metals and Materials (No.2008zd-07)
文摘The recrystallization behavior of a single crystal nickel-base superalloy was investigated by shot peening and subsequent annealing. Two kinds of recrystallization microstructures, which are intensively dependent on the annealing temperature, are shown in the nickel-base superalloy after shot peening and subsequent annealing. Surface recrystallized grains are obtained when the superalloy is annealed at solution treatment temperature. The nucleation of recrystallization originates from the dendritic core, where rapid dissolution of γ' particles occurs. Cellular recrystallization is observed after annealing at lower temperatures. Cellular structures induced by high diffusivity of the moving boundary and more γ' particles dissolution led by residual stress are developed from the surface region. Recrystallized kinetics of the shot-peened alloy annealed at 1050°C accords with the Johnson-Mehl-Avrami-Kolmogorov equation. The low Avrami exponent is caused by the inhomogeneous distribution of stored energy, the decreasing of stored energy during recovery, and the strong resistance of boundary migration by γ' particles.
基金supported by the National Natural Science Foundation of China(No.50371042).
文摘The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃.
基金supported by the National Natural Science Foundation of China (Grant No.50771081,50931004)the National Basic Research Program of China (2010CB631202)
文摘A single crystal Ni-based superalloy AM3 was processed at withdraw rates of 3.5, 10, 50, 100, 200, and 500 μm·s-1, respectively.The as-cast microstructures and solidification segregation ratio were characterized with various withdraw rates.The shape and size of carbide microstructures were determined.As expected, the primary and secondary dendrite arm spacings (PDAS and SDAS) decrease with the increase of withdraw rate.The highest volume fraction of eutectic γ/γ' is observed at the 100 μm·s-1 withdraw rate.The volume fraction of eutectic γ/γ' does not appear to be a strong function of the withdraw rate.With increasing withdraw rate, interface morphologies change in the sequence of planar, cellular, and dendrite.There is a general refinement of the microstructure as the withdraw rate increases.EPMA analysis showed that withdraw rate does not have obvious influence on the segregation of elements.
基金supported by The National Natural Science Foundation of China (Grants 11102139 and 11472195)The Natural Science Foundation of Hubei Province of China (Grant 2014CFB713)
文摘An anisotropic micromechanics model based on the equivalent inclusion method is developed to investigate the rafting direction of Ni-based single crystal superalloys. The micromechanical model considers actual cubic structure and orthogonal anisotropy properties. The von Mises stress, elastic strain energy density, and hydrostatic pressure in dif- ferent inclusions of micromechanical model are calculated when applying a tensile or compressive loading along the [001] direction. The calculated results can successfully pre- dict the rafting direction for alloys exhibiting a positive or a negative mismatch, which are in agreement with pervious experimental and theoretical studies. Moreover, the elastic constant differences and mismatch degree of the matrix and precipitate phases and their influences on the rafting direction are carefully discussed.
基金National Natural Science F oundation of China (5 0 0 0 5 0 16) Aviation F oundation (0 0 B5 3 0 10 ) as well as theYangtze River Foundation
文摘The possibility of a life prediction model for nickel base single crystal blades has been studied. The fatigue creep (FC) and thermal fatigue creep(TMFC) as well as creep experiments have been carried out with different hold time of DD3. The hold time and the frequency as well as the temperature range are the main factors influencing the life. An emphasis has been put on the micro mechanism of the rupture of creep, FC and TMFC. Two main factors are the voiding and degeneration of the material for the cre...
基金This work was supported by the National Natural Science Foundation of China under grand No.50474058.
文摘The influence of Co, W and Ti on stress-rupture lives of a Ni-Cr-AI-Mo-Ta-Co-W-Ti single crystal nickel-base superalloy has been investigated using a L9 (34) orthogonal array design (OAD) by statistical analysis. At a selected composition range, Ti content was the most important factor to the effect of the stress-rupture lives and then followed by Co content. W content had the minimum effect on stress-rupture lives. The optimal alloy should contain 10 wt pct Co, 8 wt pct W and zero Ti. The optimized alloy also had good microstructural stability during thermal exposure at 870℃ for 500 h.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No G2000067102) and the National Natural Science Foundation of China (Grant No 90101004).
文摘The mosaic structure in a Ni-based single-crystal superalloy is simulated by molecular dynamics using a potential employed in a modified analytic embedded atom method. From the calculated results we find that a closed threedimensional misfit dislocation network, with index of (011){100} and the side length of the mesh 89.6A, is formed around a cuboidal γ′ precipitate. Comparing the simulation results of the different mosaic models, we find that the side length of the mesh only depends on the lattice parameters of the γ and γ′ phases as well as the γ/γ′ interface direction, but is independent of the size and number of the cuboidal γ′ precipitate. The density of dislocations is inversely proportional to the size of the cuboidal γ′ precipitate, i.e. the amount of the dislocation is proportional to the total area of the γ/γ′ interface, which may be used to explain the relation between the amount of the fine γ′ particles and the creep rupture life of the superalloy. In addition, the closed three-dimensional networks assembled with the misfit dislocations can play a significant role in improving the mechanical properties of superalloys.
文摘This paper mainly concentrates on design of improved controller and its implementation based on single phase synchronous reference frame theory (SRFT) for Dynamic Voltage Restorer (DVR) compensating voltage sag particularly for nonlinear load. In case of single phase distribution line with nonlinear load, the complexity of controller’s design becomes more serious issue. The present single phase and/or three phase theories applicable to DVR shows poor response to restore voltage sag in case of nonlinear load due to presence of harmonics. Hence restoration of voltage sag in single phase nonlinear load connected system has been a serious concern. Therefore, new controller for DVR has been proposed incorporating effective design concept for fundamental component extraction in case of nonlinear load. The single phase SRFT based main controller for DVR works on two separate closed path viz. feed forward path for quick transient response and feedback path for reducing the steady state error. Moreover, pre-sag mitigation strategy of DVR has been adapted through these two aforementioned paths. Complete design of proposed controller is based on phasor analysis. It also consist of proportional integral (PI) controller to reduce the error in the DC-link voltage during compensation time. The controller performance has been verified in MATLAB Simulink for both types (linear and nonlinear) of load. The results obtained indicates that the proposed controller is effective in its performance.
文摘The modified single base propellant samples were prepared by impregnating blasting oil into single base grains and deactivating deterrent in water medium. The concentration distribution of functional compositions in this propellant was determined by using FTIR micro-spectroscopy. Its combustion performance was investigated by means of closed-bomb and interior ballistic tests. The results show that the concentration of NG distributes parabolically along the radius and the concentration of NA decreases from the surface to the centre exponentially. The deeper the NG impregnates, the slower the NA concentration decreases, the stronger the progressive combustion is and the better the interior ballistic performance is. When the depth corresponding to maximum NG concentration is about 1/2 of the web and the NA decreases slowly, the progressive combustion is the strongest and the interior ballistic performance is the best.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB606402)the National Natural Science Foundation of China(Grant No.51071091)
文摘An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1) random solid solutions are calculated as a function of the concentrations of Co and A1. The calculated SFEs decrease with increasing concentrations of Co and A1, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ(Ni) may be improved by the addition of Co.
基金Supported by the National Natural Science Foundation of China (No 50571070)
文摘By means of pre-compressive creep treatment, the cubic γ′ phase in a nickel base single crystal superalloy is transformed into the P-type rafted structure. And the influence of the pre-compressive creep on the internal friction stress and creep lifetimes of the superalloy are investigated by means of the measurement of the creep curves and microstructure observation. Results show that, compared to the P-type structure alloy, the full heat treated state alloy displays a bigger internal friction stress value of dislocation motion during steady state creep and a longer creep lifetimes. The creep activation energies of the full heat treated and P-type structures alloys are measured to be 462 kJ/mol and 412 kJ/mol, respectively. Thereinto, the P-type rafted γ′ phase in the alloy is transformed into the N-type structure during tensile creep. And the N-type γ′ phase transformed from the P-type structure displays a shorter size in length, this is a main reason of the P-type structure alloy possessing a shorter creep lifetimes due to creep dislocation moving easily over the rafted γ′ phase.
基金Supported by the National Basic Research Program of China under Grant No 2012CB933501the National Natural Science Foundation of China under Grant Nos 61307033,61274070,61137003 and 61321063
文摘A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074280 and 11403084the Instrument Developing Project of Chinese Academy of Sciences under Grant No YZ201152+2 种基金the Fundamental Research Funds for Central Universities under Grant Nos JUSRP51323B and JUDCF12032the Joint Innovation Project of Jiangsu Province under Grant No BY2013015-19the Graduate Student Innovation Program for Universities of Jiangsu Province under Grant No CXLX12_0724
文摘A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique design of the pattern inversion is used, and the pattern is transferred to be negative in the electron-beam lithography step. The oxidation process is used to form the silicon oxide tunneling barriers, and to further reduce the effective size of the quantum dot. Combinations of these methods offer advantages of good size controllability and accuracy, high reproducibility, low cost, large-area contacts, allowing batch fabrication of single electron transistors and good integration with a radio-frequency tank circuit. The fabricated single electron transistor with a quantum dot about 50nto in diameter is demonstrated to operate at temperatures up to 70K. The charging energy of the Coulomb island is about 12.5meV.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303200the National Natural Science Foundation of China under Grant Nos U1732273,U1732159,91421109,91622115,11522432,11574217 and 61774133the Natural Science Foundation of Jiangsu Province under Grant No BK20160659
文摘We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.
基金supported by the Ministry of Education,Japan,as Grant-in-Aid for Scientific Research(No.12650072 and 15360046)are greatly acknowledged
文摘An analytical method to investigate the morphological evolution of the cellular mi-crostructure is explored and proposed. The method is essentially based on the Es-helby 's micromechanics theory, and it is extended so as to be applied for a material system containing inclusions with high volume fraction, by employing the average stress field approximation by Mori and Tanaka. The proposed method enables us to discuss a stable shape of precipitate in the material system, which must be influenced by many factors: e.g., volume fraction of precipitate; Young's modulus ratio and lattice misfit between matrix and precipitate; external stress field in multiaxial state; and heterogeneity of plastic strain between matrix and precipitate. A series of numerical calculations were summarized on stable shape maps. The application of the method to predict the γ' rafting in superalloys during creep showed that the heterogeneity of plastic strain between matrix and precipitates may play a significant role in the shape stability of the precipitate. Furthermore, it was shown that the method was successfully applied to estimate the morphology of the cellular microstructure formed in CMSX-4 single crystal Ni-based superalloy.
文摘Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain rates at 950 degrees C. The cyclic strain rates were chosen as 1.0 x 10(-2), 1.33 x 10(-3) and 0.33 x 10(-3) s(-1). The octahedral slip systems were confirmed to be activated on all the specimens. The experimental result shows that the fatigue behavior depends an the crystallographic orientation and cyclic strain rate. Except [0 0 1] orientation specimens, it is found from the scanning electron microscopy(SEM) examination that there are typical fatigue striations on the fracture surfaces. These fatigue striations are made up of cracks. The width of the fatigue striations depends on the crystallographic orientation and varies with the total strain range. A simple linear relationship exists between the width and total shear strain range modified by an orientation and strain rate parameter. The nonconformity to the Schmid law of tensile/compressive flaw stress and plastic behavior existed at 95 degrees C, and an orientation and strain rate modified Lall-Chin-Pope ( LCP) model was derived for the nonconformity. The influence of crysrallographic orientation and cyclic strain rate on the LCF behavior can be predicted satisfactorily by the model. In terms of an orientation and strain rate modified total strain range, a model for fatigue life was proposed and used successfully to correlate the fatigue lives studied.