A systematic wear model of the cylindrical grinding process with an alumina abrasive belt from the perspective of single grain sliding wear was established in this study.The model consists of three parts:a single cutt...A systematic wear model of the cylindrical grinding process with an alumina abrasive belt from the perspective of single grain sliding wear was established in this study.The model consists of three parts:a single cutting force model derived by applying a stress integration method,a single grain wear height analysis based on the wear rate of alumina,and a grinding mileage prediction of multiple grains with Gaussian distributed protrusion heights.Cutting force,single grain wear height and full‐size grinding mileage verification experiments were conducted.The results indicated that the established model was in reasonable agreement with the experimental outcomes,which suggests that this model could be useful in the industry to predict the wear process of abrasive belts.展开更多
Single pollen grain polymerase chain reaction (PCR) has succeeded in several species, however only limited numbers of pollen grains were involved due to difficulties in pollen isolation and lysis. This has limited i...Single pollen grain polymerase chain reaction (PCR) has succeeded in several species, however only limited numbers of pollen grains were involved due to difficulties in pollen isolation and lysis. This has limited its application in genetic analysis and mapping studies in plants. A high-throughput (HT) procedure for collecting and detecting genetic variation in a large number of individual pollen grains by PCR is reported. The HT procedure involved the collection of individual pollen grains by a pair of special forceps and the lysis of pollen grains in a heated alkali/detergent solution followed by neutralization with a tris-ethylenediamine tetraacetic acid (TE) buffer. These resulting template solutions yielded PCR reactions involving the 5S ribosomal RNA intergenic spacers, randomly amplified polymorphic DNA, and simple sequence repeats markers. Using this procedure, one person with experience could collect and process up to 288 single pollen grain PCR reactions per day. The method worked well on sugarcane, corn, Miscanthus spp., snap bean, sorghum, and tomato. The ability to collect and conduct PCR on individual pollen grains on a large scale offers a new approach to genetic analyses and mapping studies in an easily controllable environment with a considerable cost reduction. The method will also significantly benefit studies in species that are difficult subjects for classical genetic research.展开更多
To achieve the secondary production in multistage fracturing wells of tight oil,milling tools are usually used to remove the multistage fracturing ball seats to achieve production with a large diameter in later.In thi...To achieve the secondary production in multistage fracturing wells of tight oil,milling tools are usually used to remove the multistage fracturing ball seats to achieve production with a large diameter in later.In this paper,first of all,the working mechanism of milling tools for multistage fracturing ball seats was studied and a mechanical analysis model of single abrasive grain was established.Then,an experimental system for milling tools was developed,and the experimental tests of the flat,the blade,and the slope milling tool were conducted in order.Besides,the morphology of chips and the surface morphology of the workpiece after the experiment were analyzed.Also,the working performance of milling tools was evaluated from the perspectives of working safety,working efficiency,and wear resistance of the milling tool.The results show that the torque of the milling tool increases nonlinearly with the increase in the cutting depth of the abrasive grain and increases linearly with the increase in the cutting width.Also,the chips are irregular particles and the size is mainly from 10 to 50μm.So,the chips should be pumped up with a small pump pressure and a large displacement.Besides this,the cutting depths of the abrasive grains are from 216.20 to 635.47μm and the bottom surface of the milling tool should be eccentric to avoid the zero point of cutting speed.Furthermore,the torque of the slope milling tool is 23.8%larger than that of the flat milling tool,which is also 30.4%smaller than that of the blade milling tool.Compared with the flat milling tool,the working efficiency of the blade milling tool improves by 79.9%and the slope milling tool improves by 111.1%.Also,the wear resistance of the blade milling tool decreases by 102.7%,while the slope milling tool declines by 32.6%when compared with the flat milling tool.Therefore,the slope milling tool has the characteristics of moderate torque,stable working conditions,the highest working efficiency,and fine wear resistance,which is preferably used to mill multistage fracturing ball seats.This study provides a theoretical basis and guidance for milling multistage fracturing ball seats on-site and realizing production with a large diameter in later stages of multistage fracturing wells.展开更多
A vectorization analysis technique for crystal growth and microstructure development in single-crystal weld was developed in our previous work. Based on the vectorization method, crystal growth and stray grain distrib...A vectorization analysis technique for crystal growth and microstructure development in single-crystal weld was developed in our previous work. Based on the vectorization method, crystal growth and stray grain distribution in laser surface remelting of single crystal superalloy CMSX-4 were investigated in com- bination of simulations with experimental observations. The energy distribution of laser was taken into consideration in this research. The experimental results demonstrate that the simulation model applies well in the prediction of dendrite growth direction. Moreover, the prediction of stray grain distribution works well except for the region of dendrites growing along the [100] direction.展开更多
Fusarium infestation of barley and other cereals can result in red mycelium and is often accompanied by mycotoxin contamination.Visual assessment and rejection of malt batches that contain more than 5–7 relevant red ...Fusarium infestation of barley and other cereals can result in red mycelium and is often accompanied by mycotoxin contamination.Visual assessment and rejection of malt batches that contain more than 5–7 relevant red kernels are so far common tools in the malting and brewing industry to guarantee high-quality malt and beer.Conspicuous single barley malt kernels were collected from naturally contaminated barley cultivars(Grace,Quench,and Malwinta)as well as from barley varieties(Grace,Quench,and Scarlett)inoculated with three different Fusarium species(Fusarium culmorum,Fusarium graminearum,and Fusarium avenaceum).A recently published multi-mycotoxin LC–MS/MS method was altered slightly and used for the analysis of Fusarium toxins of each kernel.The comparison of the contamination level with the degree of discoloration revealed only limited correlations.It seems that the visual assessment of the red mycelium of single kernels is particularly sensitive towards the occurrence of enniatins and might neglect that of other mycotoxins.展开更多
The modes of grain selection in spiral selector were investigated by both a ProCAST simulation and experimental confirmation.The results show that the efficiency of grain selection in starter block is associated with ...The modes of grain selection in spiral selector were investigated by both a ProCAST simulation and experimental confirmation.The results show that the efficiency of grain selection in starter block is associated with the geometry shape.At the early stage of grain selection,the optimization of grain orientation is dominated by competitive grain growth,but the optimization of grain orientation in starter block is gradually dominated by geometry shape at the later stage of grain selection.Besides,the spiral part could also optimize the orientation of the selected single crystal when the initial angle is large enough,and the single crystal selection in spiral parts with different pitch lengths and initial angles is dominated by different modes.The simulation results agree well with experimental ones.展开更多
A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation dur...A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation during solidification was researched.In the present work,these analytical methods were further extended.Combined with an original vectorization method,a 3D Rosenthal solution was used to determine thermal conditions of the welds.Afterward,the dendrite growth orientation,the dendrite growth velocity and the thermal gradient along dendrite direction were calculated and lively plotted.Finally,the tendency of stray grains formation in the solidification front was forecasted and its distribution was presented with a 3D plot.The results indicate that substrate orientation has some impacts on the crystal growth pattern,dendrite growth velocity,distribution of thermal gradient and stray grain.Based on the research methods proposed in this work,any substrate crystallographic orientation can be studied,and predicted stray grains distribution can be visualized.展开更多
基金financial support from “China Scholarship Council(201707090012)” which helped his stay in Japan for this joint international researchsupported by “the Fundamental Research Funds for the Central Universities”(2018JBZ105)Natural Science Foundation of Tianjin(No.15JCQNJC04800)
文摘A systematic wear model of the cylindrical grinding process with an alumina abrasive belt from the perspective of single grain sliding wear was established in this study.The model consists of three parts:a single cutting force model derived by applying a stress integration method,a single grain wear height analysis based on the wear rate of alumina,and a grinding mileage prediction of multiple grains with Gaussian distributed protrusion heights.Cutting force,single grain wear height and full‐size grinding mileage verification experiments were conducted.The results indicated that the established model was in reasonable agreement with the experimental outcomes,which suggests that this model could be useful in the industry to predict the wear process of abrasive belts.
基金Grower/processor Check-off Funds administrated by theAmerican Sugar Cane League of the USA., Inc., Thibodaux, Louisiana, USA(to Y.-B. Pan)the Chinese 948 Project (2003-Q06) (to P.-H. Chen).
文摘Single pollen grain polymerase chain reaction (PCR) has succeeded in several species, however only limited numbers of pollen grains were involved due to difficulties in pollen isolation and lysis. This has limited its application in genetic analysis and mapping studies in plants. A high-throughput (HT) procedure for collecting and detecting genetic variation in a large number of individual pollen grains by PCR is reported. The HT procedure involved the collection of individual pollen grains by a pair of special forceps and the lysis of pollen grains in a heated alkali/detergent solution followed by neutralization with a tris-ethylenediamine tetraacetic acid (TE) buffer. These resulting template solutions yielded PCR reactions involving the 5S ribosomal RNA intergenic spacers, randomly amplified polymorphic DNA, and simple sequence repeats markers. Using this procedure, one person with experience could collect and process up to 288 single pollen grain PCR reactions per day. The method worked well on sugarcane, corn, Miscanthus spp., snap bean, sorghum, and tomato. The ability to collect and conduct PCR on individual pollen grains on a large scale offers a new approach to genetic analyses and mapping studies in an easily controllable environment with a considerable cost reduction. The method will also significantly benefit studies in species that are difficult subjects for classical genetic research.
基金supported by the National Science and Technology Major Project under Grant Nos.2016ZX05042004 and 2017ZX05072the Joint Funds of the National Natural Science Foundation of China under Grant No.U1762104+2 种基金the Postgraduate Innovation Project Foundation under Grant No.YCX2019054the Fundamental Research Funds for the Central Universities under Grant No.20CX02306Athe Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment。
文摘To achieve the secondary production in multistage fracturing wells of tight oil,milling tools are usually used to remove the multistage fracturing ball seats to achieve production with a large diameter in later.In this paper,first of all,the working mechanism of milling tools for multistage fracturing ball seats was studied and a mechanical analysis model of single abrasive grain was established.Then,an experimental system for milling tools was developed,and the experimental tests of the flat,the blade,and the slope milling tool were conducted in order.Besides,the morphology of chips and the surface morphology of the workpiece after the experiment were analyzed.Also,the working performance of milling tools was evaluated from the perspectives of working safety,working efficiency,and wear resistance of the milling tool.The results show that the torque of the milling tool increases nonlinearly with the increase in the cutting depth of the abrasive grain and increases linearly with the increase in the cutting width.Also,the chips are irregular particles and the size is mainly from 10 to 50μm.So,the chips should be pumped up with a small pump pressure and a large displacement.Besides this,the cutting depths of the abrasive grains are from 216.20 to 635.47μm and the bottom surface of the milling tool should be eccentric to avoid the zero point of cutting speed.Furthermore,the torque of the slope milling tool is 23.8%larger than that of the flat milling tool,which is also 30.4%smaller than that of the blade milling tool.Compared with the flat milling tool,the working efficiency of the blade milling tool improves by 79.9%and the slope milling tool improves by 111.1%.Also,the wear resistance of the blade milling tool decreases by 102.7%,while the slope milling tool declines by 32.6%when compared with the flat milling tool.Therefore,the slope milling tool has the characteristics of moderate torque,stable working conditions,the highest working efficiency,and fine wear resistance,which is preferably used to mill multistage fracturing ball seats.This study provides a theoretical basis and guidance for milling multistage fracturing ball seats on-site and realizing production with a large diameter in later stages of multistage fracturing wells.
基金financially supported by the National Natural Science Foundation of China (NSFC) under grant Nos. 51401210 and 51271186the National High Technology Research and Development Program (863 Program) of China under grant No. 2014AA041701
文摘A vectorization analysis technique for crystal growth and microstructure development in single-crystal weld was developed in our previous work. Based on the vectorization method, crystal growth and stray grain distribution in laser surface remelting of single crystal superalloy CMSX-4 were investigated in com- bination of simulations with experimental observations. The energy distribution of laser was taken into consideration in this research. The experimental results demonstrate that the simulation model applies well in the prediction of dendrite growth direction. Moreover, the prediction of stray grain distribution works well except for the region of dendrites growing along the [100] direction.
基金the Forschungskreis der Ernährungsindustrie e.V.(FEI Bonn),the AiF,the German Federal Ministry of Economic Affairs and Energy(AiF-Project No.:17221 N)Wissenschaftsförderung der Deutschen Brauwirtschaft e.V.,and Wissenschaftliche Station für Brauerei in München e.V.Moreover,the authors gratefully thank Cajetan Geißinger,Chair of Brewing and Beverage Technology,TU München,and Katharina Hofer,Chair of Phytopathology,TU München,for providing barley malt samples and Fusarium DNA data.
文摘Fusarium infestation of barley and other cereals can result in red mycelium and is often accompanied by mycotoxin contamination.Visual assessment and rejection of malt batches that contain more than 5–7 relevant red kernels are so far common tools in the malting and brewing industry to guarantee high-quality malt and beer.Conspicuous single barley malt kernels were collected from naturally contaminated barley cultivars(Grace,Quench,and Malwinta)as well as from barley varieties(Grace,Quench,and Scarlett)inoculated with three different Fusarium species(Fusarium culmorum,Fusarium graminearum,and Fusarium avenaceum).A recently published multi-mycotoxin LC–MS/MS method was altered slightly and used for the analysis of Fusarium toxins of each kernel.The comparison of the contamination level with the degree of discoloration revealed only limited correlations.It seems that the visual assessment of the red mycelium of single kernels is particularly sensitive towards the occurrence of enniatins and might neglect that of other mycotoxins.
基金supported by the National Basic Research Program(973 Program) of China under Grant No.2010CB631200(2010CB631206)the National Natural Science Foundation of China(NSFC) under Grant No.50801061,No.50931004,No.51071165the fund of the State Key Laboratory of Solidification Processing in NWPU under Grant No.SKLSP201112
文摘The modes of grain selection in spiral selector were investigated by both a ProCAST simulation and experimental confirmation.The results show that the efficiency of grain selection in starter block is associated with the geometry shape.At the early stage of grain selection,the optimization of grain orientation is dominated by competitive grain growth,but the optimization of grain orientation in starter block is gradually dominated by geometry shape at the later stage of grain selection.Besides,the spiral part could also optimize the orientation of the selected single crystal when the initial angle is large enough,and the single crystal selection in spiral parts with different pitch lengths and initial angles is dominated by different modes.The simulation results agree well with experimental ones.
基金financially supported by the National Natural Science Foundation of China(Nos.51401210 and51271186)the National High Technology Research and Development Program of China(No.2014AA041701)
文摘A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation during solidification was researched.In the present work,these analytical methods were further extended.Combined with an original vectorization method,a 3D Rosenthal solution was used to determine thermal conditions of the welds.Afterward,the dendrite growth orientation,the dendrite growth velocity and the thermal gradient along dendrite direction were calculated and lively plotted.Finally,the tendency of stray grains formation in the solidification front was forecasted and its distribution was presented with a 3D plot.The results indicate that substrate orientation has some impacts on the crystal growth pattern,dendrite growth velocity,distribution of thermal gradient and stray grain.Based on the research methods proposed in this work,any substrate crystallographic orientation can be studied,and predicted stray grains distribution can be visualized.