Methods for the characterization of mould slag crystallization with special emphasis on the single/double hot thermocouple technique(SHTT/DHTT)are reviewed.In the continuous casting process of steels,horizontal heat t...Methods for the characterization of mould slag crystallization with special emphasis on the single/double hot thermocouple technique(SHTT/DHTT)are reviewed.In the continuous casting process of steels,horizontal heat transfer is mainly influenced by the crystallization behaviour of the mould flux film.Here,both precipitation of crystals out of a liquid phase and devitrification of the glassy film in contact with the mould are of main interest.Therefore,various investigation methods are implemented to characterize different slag properties related to crystallization:a viscometer for determining the break temperature,differential thermal analysis(DTA),confocal scanning laser microscopy,and the water-cooled copper finger test.For near-service conditions,DHTT reveals the most detailed information,including not only the crystallization or devitrification temperature but also the morphology as well as the crystallization velocity.Due to improvements in the device and the representation of the results,a comparison of different samples is possible.Nevertheless,the application field of SHTT/DHTT is restricted to slag systems with low contents of evaporating components.Furthermore,the time required for data analysis is significantly longer than that required for other methods,e.g.DTA.Therefore,the application of DHTT is mainly advisable for mould slag research and development,whereas DTA can also be used for incoming inspections.展开更多
The crystallization behavior of mold fluxes containing 0-8 mass% TiO2 was investigated using the single hot therrnocouple technique (SHTT) and X ray diffraction (XRD) to study the possible effects on the coordinat...The crystallization behavior of mold fluxes containing 0-8 mass% TiO2 was investigated using the single hot therrnocouple technique (SHTT) and X ray diffraction (XRD) to study the possible effects on the coordination of heat transfer control and strand lubrication for casting crack sensitive peritectic steels. Time-temperature-transforma tion (TTT) and continuous-cooling transformation (CCT) curves were plotted using the data obtained from SHTT to characterize the crystallization of the mold fluxes. The results showed that crystallization of the mold fluxes during isothermal and non-isothermal processes was suppressed with TiO2 addition. From the TTT curves, it could be seen that the incubation and growth time of crystallization increased significantly with TiO2 addition. The CCT curves showed that the crystallization temperature initially decreased, and then suddenly increased with increasing the TiO2 content. XRD analysis suggested the presence of cuspidine in the mold fluxes with lower TiO2 content (〈4 mass%) , while both perovskite and cuspidine were detected in the mold fluxes when the TiO2 content was increased to 8 mass%. In addition, the growth mechanisms of the crystals changed during the isothermal crystallization process from interface controlled growth to diffusion-controlled growth with increasing the TiO2 content.展开更多
The crystallization behavior of blast-furnace slag under isothermal and continuous-cooling conditions was studied using the single hot thermocouple technique.The crystallization phases were obtained using FactSage sof...The crystallization behavior of blast-furnace slag under isothermal and continuous-cooling conditions was studied using the single hot thermocouple technique.The crystallization phases were obtained using FactSage software and X-ray diffractometry.The crystallization kinetic parameters were calculated by combining these results with the Johnson-Mehl—Avrami model.Under isothermal conditions,the shortest crystallization incubation time was 24 and 18 s when the temperatures were 1300 and 1150℃,and the corresponding critical cooling rates were 4.5 and 14.3℃/s,respectively.At 1270℃,the slag was difficult to crystallize and the fiber-forming rate improved.When the continuous-cooling rate was 6.5℃/s,the slag solidified into a glassy state.The main crystallization phases,gehlenite,akermanite,anorthite,and melangite,were most easily precipitated.The growth factors of melangite and anorthite were approximately 1.63 and 1.68,respectively,which indicated that the crystals nucleated on the surface and grew in two dimensions.展开更多
The single hot thermocouple technique (SHTT) and high temperature equilibrium technique were combined to investigate the phase diagram of the CaO-SiO2-5%MgO-20%AlzO3-TiO2 system. The 1300 ℃ to 1500 ℃ liquidus line...The single hot thermocouple technique (SHTT) and high temperature equilibrium technique were combined to investigate the phase diagram of the CaO-SiO2-5%MgO-20%AlzO3-TiO2 system. The 1300 ℃ to 1500 ℃ liquidus lines are calculated according to the thermodynamic equations based on the pseudo-melting temperatures measured by the single hot thermocouple technique. The phase equilibria relationships are experimentally determined at 1400 ℃ using the high temperature equilibria technique followed by X-ray fluorescence (XRF), X-ray diffraction(XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis. The liquid phase(L), melilite solid solution phase ((C2MSz,C2AS)ss), diopside phase(CMS2) and perovskite phase (CaO·TiO2) are found. Coupled with the liquidus lines and equilibria results, the phase diagram is constructed for the specified region of the CaO-SiO2-5%MgO-20%Al2O3-TiO2 system.展开更多
The crytallization behavior and melt structure of the CaO-Si0^(2-)B20_(3)-based fluorine-free mold fux were investigated.The results show that the crytallization of the mold fux was first inhibited and then promoted w...The crytallization behavior and melt structure of the CaO-Si0^(2-)B20_(3)-based fluorine-free mold fux were investigated.The results show that the crytallization of the mold fux was first inhibited and then promoted with the increase in Al_(2)0_(3) content from 4 to 12 wt.%.However,it was enhanced by MgO in the range of 2-10 wt.%.The results of Fourier transform infrared spectroscopy and Raman spectroscopy showed that Al_(2)0_(3) worked as a network former in the mold flux melt when its content was in the range of 4-8 wt.%,whereas it worked as the network breaker to provide 0^(2-)when its content was in the range of 8-12 wt.%.In addition,the combined efects from the charge compensation by Mg^(2+)and the network broken by 0^(2-)led to the increase in some typicalT-O-T(AI-O-A1,B-O-B,etc.,)and simpler structural units(Q^(2)(Si),B_^(O-)in the[B0_(2)0^(-)],.etc.)when the MgO content was in the range of 2-6 wt.%.The continuous increase in 0^(2-)provided by the addition of MgO from 6 to 10 wt.%further depolymerized the network of the melt and fnally caused fast crystallizationo.展开更多
文摘Methods for the characterization of mould slag crystallization with special emphasis on the single/double hot thermocouple technique(SHTT/DHTT)are reviewed.In the continuous casting process of steels,horizontal heat transfer is mainly influenced by the crystallization behaviour of the mould flux film.Here,both precipitation of crystals out of a liquid phase and devitrification of the glassy film in contact with the mould are of main interest.Therefore,various investigation methods are implemented to characterize different slag properties related to crystallization:a viscometer for determining the break temperature,differential thermal analysis(DTA),confocal scanning laser microscopy,and the water-cooled copper finger test.For near-service conditions,DHTT reveals the most detailed information,including not only the crystallization or devitrification temperature but also the morphology as well as the crystallization velocity.Due to improvements in the device and the representation of the results,a comparison of different samples is possible.Nevertheless,the application field of SHTT/DHTT is restricted to slag systems with low contents of evaporating components.Furthermore,the time required for data analysis is significantly longer than that required for other methods,e.g.DTA.Therefore,the application of DHTT is mainly advisable for mould slag research and development,whereas DTA can also be used for incoming inspections.
文摘The crystallization behavior of mold fluxes containing 0-8 mass% TiO2 was investigated using the single hot therrnocouple technique (SHTT) and X ray diffraction (XRD) to study the possible effects on the coordination of heat transfer control and strand lubrication for casting crack sensitive peritectic steels. Time-temperature-transforma tion (TTT) and continuous-cooling transformation (CCT) curves were plotted using the data obtained from SHTT to characterize the crystallization of the mold fluxes. The results showed that crystallization of the mold fluxes during isothermal and non-isothermal processes was suppressed with TiO2 addition. From the TTT curves, it could be seen that the incubation and growth time of crystallization increased significantly with TiO2 addition. The CCT curves showed that the crystallization temperature initially decreased, and then suddenly increased with increasing the TiO2 content. XRD analysis suggested the presence of cuspidine in the mold fluxes with lower TiO2 content (〈4 mass%) , while both perovskite and cuspidine were detected in the mold fluxes when the TiO2 content was increased to 8 mass%. In addition, the growth mechanisms of the crystals changed during the isothermal crystallization process from interface controlled growth to diffusion-controlled growth with increasing the TiO2 content.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51474090).
文摘The crystallization behavior of blast-furnace slag under isothermal and continuous-cooling conditions was studied using the single hot thermocouple technique.The crystallization phases were obtained using FactSage software and X-ray diffractometry.The crystallization kinetic parameters were calculated by combining these results with the Johnson-Mehl—Avrami model.Under isothermal conditions,the shortest crystallization incubation time was 24 and 18 s when the temperatures were 1300 and 1150℃,and the corresponding critical cooling rates were 4.5 and 14.3℃/s,respectively.At 1270℃,the slag was difficult to crystallize and the fiber-forming rate improved.When the continuous-cooling rate was 6.5℃/s,the slag solidified into a glassy state.The main crystallization phases,gehlenite,akermanite,anorthite,and melangite,were most easily precipitated.The growth factors of melangite and anorthite were approximately 1.63 and 1.68,respectively,which indicated that the crystals nucleated on the surface and grew in two dimensions.
基金Projects(51104039,51374059,51304042)supported by the National Natural Science Foundation of ChinaProject(L2013114)supported by Scientific Research Fund of Liaoning Provincial Education Department,China+1 种基金Project(2012221013)supported by Programs of Liaoning Province for Science and Technology Development,ChinaProject(N130602002)supported by the Fundamental Research Funds for the Central Universities China
文摘The single hot thermocouple technique (SHTT) and high temperature equilibrium technique were combined to investigate the phase diagram of the CaO-SiO2-5%MgO-20%AlzO3-TiO2 system. The 1300 ℃ to 1500 ℃ liquidus lines are calculated according to the thermodynamic equations based on the pseudo-melting temperatures measured by the single hot thermocouple technique. The phase equilibria relationships are experimentally determined at 1400 ℃ using the high temperature equilibria technique followed by X-ray fluorescence (XRF), X-ray diffraction(XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis. The liquid phase(L), melilite solid solution phase ((C2MSz,C2AS)ss), diopside phase(CMS2) and perovskite phase (CaO·TiO2) are found. Coupled with the liquidus lines and equilibria results, the phase diagram is constructed for the specified region of the CaO-SiO2-5%MgO-20%Al2O3-TiO2 system.
基金This work was supported by the National Natural Science Foundation of China(51874363,U1760202)Natural Science Foundation of Hunan Province(2019JJ40345)Hunan Scientific Technology Projects(2018RS3022,2018WK2051).
文摘The crytallization behavior and melt structure of the CaO-Si0^(2-)B20_(3)-based fluorine-free mold fux were investigated.The results show that the crytallization of the mold fux was first inhibited and then promoted with the increase in Al_(2)0_(3) content from 4 to 12 wt.%.However,it was enhanced by MgO in the range of 2-10 wt.%.The results of Fourier transform infrared spectroscopy and Raman spectroscopy showed that Al_(2)0_(3) worked as a network former in the mold flux melt when its content was in the range of 4-8 wt.%,whereas it worked as the network breaker to provide 0^(2-)when its content was in the range of 8-12 wt.%.In addition,the combined efects from the charge compensation by Mg^(2+)and the network broken by 0^(2-)led to the increase in some typicalT-O-T(AI-O-A1,B-O-B,etc.,)and simpler structural units(Q^(2)(Si),B_^(O-)in the[B0_(2)0^(-)],.etc.)when the MgO content was in the range of 2-6 wt.%.The continuous increase in 0^(2-)provided by the addition of MgO from 6 to 10 wt.%further depolymerized the network of the melt and fnally caused fast crystallizationo.