The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured a...The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.展开更多
This paper is concerned with the problem of network power quality when grid connected systems are used to feed the grid. These systems use power electronic components such as inverters that produce harmonics which adv...This paper is concerned with the problem of network power quality when grid connected systems are used to feed the grid. These systems use power electronic components such as inverters that produce harmonics which adversely affect the power quality of the distribution network. Instead of using a conventional PI current controller with a fixed proportional and integral gain, development of new control method is considered to overcome the total harmonic emissions in PV inverters. It considers a modification to the controller where a random integral gain is used in the system. Experimental hardware is developed and result shows a reduced total harmonic distortion (THD) of the output current when tested with a resistive load.展开更多
This paper proposes a single-stage inverter system with maximum power point tracking control (MPPT) applicable in low-power photovoltaic (PV) energy conversion systems. The proposed system is successfully implemented ...This paper proposes a single-stage inverter system with maximum power point tracking control (MPPT) applicable in low-power photovoltaic (PV) energy conversion systems. The proposed system is successfully implemented using a single digital signal processor (DSP) TMS320F2808. The proposed single-stage inverter system has the following features: 1) the ability to harvest the maximum PV power using two simple and effective current sampling methods;2) flexible topology based on the positioning of DC link capacitor on the outside of the inverter bridge circuits;3) reduced volume and higher efficiency than the conventional two-stage inverters, and 4) MPPT accuracy of 99.3% with overall efficiency of 90% under the full-load condition.展开更多
Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were estab...Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were established to analyze the dynamical phenomenon in the single phase H-bridge inverter. The dynamical characteristics of the single phase H- bridge inverter, such as time domain waveform diagram, bifurcation diagram, and folding map, were obtained by using the numerical calculation when the circuit parameters varied in specific range. Moreover, the simulation results were obtained by using the OrCAD-PSpice software to validate the numerical calculation. Both the numerical calculation and the circuit simulation show that the symmetrical dynamical phenomenon occurs in the single phase H-bridge inverter controlled by the peak current or the valley current.展开更多
In this paper, simulation and implementation way for practical control of Single Inverter Microgrid (SIMG) is presented. This system is equipped by solar system, wind energy conversion system (WECS), and microturbine ...In this paper, simulation and implementation way for practical control of Single Inverter Microgrid (SIMG) is presented. This system is equipped by solar system, wind energy conversion system (WECS), and microturbine system. Each DG’s has controlled independently. This is a kind of decentralize control because each DG’s has difference controller. Control of Microgrid (MG) during both grid tie and islanding modes is presented. Solar system and WECS are modeled based on santerno products. This system is compared with three inverter MGs with Centralize control strategy. Controlled signals show that SIMG is more reliable and economical. THD is improved and strategy is simplified for SIMG.展开更多
3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage ...3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)展开更多
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr...The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed.展开更多
The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit ...The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit for proper functionality. Cascaded H-Bridge Multilevel Inverter requires overlapped switching pulses for the switching devices in positive and negative arms of the bridge which may lead to short circuit during the device failure. This work addresses the problems in different configurations of multilevel inverter by using reduced number of switching and energy storage devices and driver circuits. In the present approach Single Switch is used for each stair case positive output and single H-Bridge for phase reversal. Driver circuits are reduced by using the property of body diode of the MOSFET. Switching pulses are generated by Arduino Development Board. The circuit is simulated using Matlab. More so, through experimental means, it is physically tested and results are analyzed for the 5-step inverter and thereby simulation is fully validated. Consequently, cycloconverter operation of the circuit is simulated using Matlab. Moreover, half bridge configuration of the multilevel inverter is also analyzed for high frequency induction heating applications.展开更多
This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design ...This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design double-loop controller and sliding mode controller are clarified, analyzed and compared in the following. Finally the validity and feasibility of the new topology are tested by simulation. The results indicate that regulation of the voltage transfer ratio and output frequency can be realized optionally by the new converter, furthermore the harmonic distortion of waveform is low. So the inherent drawback of low voltage transfer ratio of traditional converter is effectively settled. This study may provide inspiration for further engineering application.展开更多
This paper presents a basic block for building large-scale single-electron neural networks. This macro block is completely composed of SET inverter circuits. We present and discuss the basic parts of this device. The ...This paper presents a basic block for building large-scale single-electron neural networks. This macro block is completely composed of SET inverter circuits. We present and discuss the basic parts of this device. The full design and simulation results were done using MATLAB and SIMON, which are a single-electron tunnel device and circuit simulator based on a Monte Carlo method. Special measures had to be taken in order to simulate this circuit correctly in SIMON and compare results with those of SPICE simulation done before. Moreover, we study part of the network as a memory cell with the idea of combining the extremely low-power properties of the SET and the compact design.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019,12105339,and62174180)the Opening Special Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,China(Grant No.SKLIPR2113)。
文摘The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.
文摘This paper is concerned with the problem of network power quality when grid connected systems are used to feed the grid. These systems use power electronic components such as inverters that produce harmonics which adversely affect the power quality of the distribution network. Instead of using a conventional PI current controller with a fixed proportional and integral gain, development of new control method is considered to overcome the total harmonic emissions in PV inverters. It considers a modification to the controller where a random integral gain is used in the system. Experimental hardware is developed and result shows a reduced total harmonic distortion (THD) of the output current when tested with a resistive load.
文摘This paper proposes a single-stage inverter system with maximum power point tracking control (MPPT) applicable in low-power photovoltaic (PV) energy conversion systems. The proposed system is successfully implemented using a single digital signal processor (DSP) TMS320F2808. The proposed single-stage inverter system has the following features: 1) the ability to harvest the maximum PV power using two simple and effective current sampling methods;2) flexible topology based on the positioning of DC link capacitor on the outside of the inverter bridge circuits;3) reduced volume and higher efficiency than the conventional two-stage inverters, and 4) MPPT accuracy of 99.3% with overall efficiency of 90% under the full-load condition.
基金Project supported by the National Natural Science Foundation of China(Grant No.51107016)the National Basic Research Program of China(Grant No.2013CB035605)the Postdoctoral Science Research Developmental Foundation of Heilongjiang Province,China(Grant No.LHB-Q12086)
文摘Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were established to analyze the dynamical phenomenon in the single phase H-bridge inverter. The dynamical characteristics of the single phase H- bridge inverter, such as time domain waveform diagram, bifurcation diagram, and folding map, were obtained by using the numerical calculation when the circuit parameters varied in specific range. Moreover, the simulation results were obtained by using the OrCAD-PSpice software to validate the numerical calculation. Both the numerical calculation and the circuit simulation show that the symmetrical dynamical phenomenon occurs in the single phase H-bridge inverter controlled by the peak current or the valley current.
文摘In this paper, simulation and implementation way for practical control of Single Inverter Microgrid (SIMG) is presented. This system is equipped by solar system, wind energy conversion system (WECS), and microturbine system. Each DG’s has controlled independently. This is a kind of decentralize control because each DG’s has difference controller. Control of Microgrid (MG) during both grid tie and islanding modes is presented. Solar system and WECS are modeled based on santerno products. This system is compared with three inverter MGs with Centralize control strategy. Controlled signals show that SIMG is more reliable and economical. THD is improved and strategy is simplified for SIMG.
文摘3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)
文摘The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed.
文摘The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit for proper functionality. Cascaded H-Bridge Multilevel Inverter requires overlapped switching pulses for the switching devices in positive and negative arms of the bridge which may lead to short circuit during the device failure. This work addresses the problems in different configurations of multilevel inverter by using reduced number of switching and energy storage devices and driver circuits. In the present approach Single Switch is used for each stair case positive output and single H-Bridge for phase reversal. Driver circuits are reduced by using the property of body diode of the MOSFET. Switching pulses are generated by Arduino Development Board. The circuit is simulated using Matlab. More so, through experimental means, it is physically tested and results are analyzed for the 5-step inverter and thereby simulation is fully validated. Consequently, cycloconverter operation of the circuit is simulated using Matlab. Moreover, half bridge configuration of the multilevel inverter is also analyzed for high frequency induction heating applications.
文摘This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design double-loop controller and sliding mode controller are clarified, analyzed and compared in the following. Finally the validity and feasibility of the new topology are tested by simulation. The results indicate that regulation of the voltage transfer ratio and output frequency can be realized optionally by the new converter, furthermore the harmonic distortion of waveform is low. So the inherent drawback of low voltage transfer ratio of traditional converter is effectively settled. This study may provide inspiration for further engineering application.
文摘This paper presents a basic block for building large-scale single-electron neural networks. This macro block is completely composed of SET inverter circuits. We present and discuss the basic parts of this device. The full design and simulation results were done using MATLAB and SIMON, which are a single-electron tunnel device and circuit simulator based on a Monte Carlo method. Special measures had to be taken in order to simulate this circuit correctly in SIMON and compare results with those of SPICE simulation done before. Moreover, we study part of the network as a memory cell with the idea of combining the extremely low-power properties of the SET and the compact design.