Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs)....Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.展开更多
In an autonomous droop-based microgrid,the system voltage and frequency(VaF)are subject to deviations as load changes.Despite the existence of various control methods aimed at correcting system frequency deviations at...In an autonomous droop-based microgrid,the system voltage and frequency(VaF)are subject to deviations as load changes.Despite the existence of various control methods aimed at correcting system frequency deviations at the secondary control level without any communication network,the challenges associated with these methods and their abilities to simul-taneously restore microgrid VaF have not been fully investigated.In this paper,a multi-input multi-output(MIMO)model reference adaptive controller(MRAC)is proposed to achieve VaF restoration while accurate power sharing among distributed generators(DGs)is maintained.The proposed MRAC,without any communication network,is designed based on two methods:droop-based and inertia-based methods.For the microgrid,the suggested design procedure is started by defining a model reference in which the control objectives,such as the desired settling time,the maximum tolerable overshoot,and steady-state error,are considered.Then,a feedback-feedforward con-troller is established,of which the gains are adaptively tuned by some rules derived from the Lyapunov stability theory.Through some simulations in MATLAB/SimPowerSystem Tool-box,the proposed MRAC demonstrates satisfactory perfor-mance.展开更多
The parameters of power system slowly change with time due to environmental effects or may change rapidly due to faults. It is preferable that the control technique in this system possesses robustness for various faul...The parameters of power system slowly change with time due to environmental effects or may change rapidly due to faults. It is preferable that the control technique in this system possesses robustness for various fault conditions and disturbances. The used flexible alternating current transmission system (FACTS) in this paper is an advanced super-conducting magnetic energy storage (ASMES). Many control techniques that use ASMES to improve power system stability have been proposed. While fuzzy controller has proven its value in some applications, the researches applying fuzzy controller with ASMES have been actively reported. However, it is sometimes very difficult to specify the rule base for some plants, when the parameters change. To solve this problem, a fuzzy model reference learning controller (FMRLC) is proposed in this paper, which investigates multi-input multi-output FMRLC for time-variant nonlinear system. This control method provides the motivation for adaptive fuzzy control, where the focus is on the automatic online synthesis and tuning of fuzzy controller parameters (i.e., using online data to continually learn the fuzzy controller that will ensure that the performance objectives are met). Simulation results show that the proposed robust controller is able to work with nonlinear and nonstationary power system (i.e., single machine-infinite bus (SMIB) system), under various fault conditions and disturbances.展开更多
The coefficient diagram method (CDM) is one of the most effective control design methods. It creates control systems that are very stable and robust with responses without the overshoot and small settling time. Furt...The coefficient diagram method (CDM) is one of the most effective control design methods. It creates control systems that are very stable and robust with responses without the overshoot and small settling time. Furthermore, all control parameters of the control systems are changed by varying some adjustment parameters in CDM depending on the demands. The model reference adaptive systems (MRAS) are the systems that follow and change the control parameters according to a given model reference system. There are several methods to combine the CDM with MRAS. One of these is to use the MRAS parameters as a gain of the CDM parameters. Another is to directly use the CDM parameters as the MRAS parameters. In the industrial applications, the system parameters can be changed frequently, but if the controller, by self-tuning, recalculates and develops its own parameters continuously, the system becomes more robust. Also, if the poles of the controlled systems approach the jw axis, the response of the closed-loop MRAS becomes more and more insufficient. In order to obtain better results, CDM is combined with a self-tuning model reference adaptive system. Systems controlled by a model reference adaptive controller give responses with small or without overshoot, have small settling times, and are more robust. Thus, in this paper, a hybrid combination of MRAS and CDM is developed and two different control structures of the control signal are investigated. The two methods are compared with MRAS and applied to real-time process control systems.展开更多
文摘Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.
文摘In an autonomous droop-based microgrid,the system voltage and frequency(VaF)are subject to deviations as load changes.Despite the existence of various control methods aimed at correcting system frequency deviations at the secondary control level without any communication network,the challenges associated with these methods and their abilities to simul-taneously restore microgrid VaF have not been fully investigated.In this paper,a multi-input multi-output(MIMO)model reference adaptive controller(MRAC)is proposed to achieve VaF restoration while accurate power sharing among distributed generators(DGs)is maintained.The proposed MRAC,without any communication network,is designed based on two methods:droop-based and inertia-based methods.For the microgrid,the suggested design procedure is started by defining a model reference in which the control objectives,such as the desired settling time,the maximum tolerable overshoot,and steady-state error,are considered.Then,a feedback-feedforward con-troller is established,of which the gains are adaptively tuned by some rules derived from the Lyapunov stability theory.Through some simulations in MATLAB/SimPowerSystem Tool-box,the proposed MRAC demonstrates satisfactory perfor-mance.
文摘The parameters of power system slowly change with time due to environmental effects or may change rapidly due to faults. It is preferable that the control technique in this system possesses robustness for various fault conditions and disturbances. The used flexible alternating current transmission system (FACTS) in this paper is an advanced super-conducting magnetic energy storage (ASMES). Many control techniques that use ASMES to improve power system stability have been proposed. While fuzzy controller has proven its value in some applications, the researches applying fuzzy controller with ASMES have been actively reported. However, it is sometimes very difficult to specify the rule base for some plants, when the parameters change. To solve this problem, a fuzzy model reference learning controller (FMRLC) is proposed in this paper, which investigates multi-input multi-output FMRLC for time-variant nonlinear system. This control method provides the motivation for adaptive fuzzy control, where the focus is on the automatic online synthesis and tuning of fuzzy controller parameters (i.e., using online data to continually learn the fuzzy controller that will ensure that the performance objectives are met). Simulation results show that the proposed robust controller is able to work with nonlinear and nonstationary power system (i.e., single machine-infinite bus (SMIB) system), under various fault conditions and disturbances.
文摘The coefficient diagram method (CDM) is one of the most effective control design methods. It creates control systems that are very stable and robust with responses without the overshoot and small settling time. Furthermore, all control parameters of the control systems are changed by varying some adjustment parameters in CDM depending on the demands. The model reference adaptive systems (MRAS) are the systems that follow and change the control parameters according to a given model reference system. There are several methods to combine the CDM with MRAS. One of these is to use the MRAS parameters as a gain of the CDM parameters. Another is to directly use the CDM parameters as the MRAS parameters. In the industrial applications, the system parameters can be changed frequently, but if the controller, by self-tuning, recalculates and develops its own parameters continuously, the system becomes more robust. Also, if the poles of the controlled systems approach the jw axis, the response of the closed-loop MRAS becomes more and more insufficient. In order to obtain better results, CDM is combined with a self-tuning model reference adaptive system. Systems controlled by a model reference adaptive controller give responses with small or without overshoot, have small settling times, and are more robust. Thus, in this paper, a hybrid combination of MRAS and CDM is developed and two different control structures of the control signal are investigated. The two methods are compared with MRAS and applied to real-time process control systems.