We used generalized additive models (GAM) to analyze the relationship between spatiotemporal factors and catch, and to estimate the monthly marine fishery yield of single otter trawls in Putuo district of Zhoushan, Ch...We used generalized additive models (GAM) to analyze the relationship between spatiotemporal factors and catch, and to estimate the monthly marine fishery yield of single otter trawls in Putuo district of Zhoushan, China. We used logbooks from five commercial fishing boats and data in government's monthly statistical reports. We developed two GAM models: one included temporal variables (month and hauling time) and spatial variables (longitude and latitude), and another included just two variables, month and the number of fishing boats. Our results suggest that temporal factors explained more of the variability in catch than spatial factors. Furthermore, month explained the majority of variation in catch. Change in spatial distribution of fleet had a temporal component as the boats fished within a relatively small area within the same month, but the area varied among months. The number of boats fishing in each month also explained a large proportion of the variation in catch. Engine power had no effect on catch. The pseudo-coefficients (PCf) of the two GAMs were 0.13 and 0.29 respectively, indicating the both had good fits. The model yielded estimates that were very similar to those in the governmental reports between January to September, with relative estimate errors (REE) of <18%. However, the yields in October and November were significantly underestimated, with REEs of 36% and 27%, respectively.展开更多
The original purpose of Vessel Monitoring System(VMS) is for enforcement and control of vessel sailing. With the application of VMS in fishing vessels, more and more population dynamic studies have used VMS data to im...The original purpose of Vessel Monitoring System(VMS) is for enforcement and control of vessel sailing. With the application of VMS in fishing vessels, more and more population dynamic studies have used VMS data to improve the accuracy of fisheries stock assessment. In this paper, we simulated the trawl trajectory under different time intervals using the cubic Hermite spline(c Hs) interpolation method based on the VMS data of 8 single otter trawl vessels(totally 36000 data items) fishing in Zhoushan fishing ground from September 2012 to December 2012, and selected the appropriate time interval. We then determined vessels' activities(fishing or non-fishing) by comparing VMS speed data with the corresponding speeds from logbooks. The results showed that the error of simulated trajectory greatly increased with the increase of time intervals of VMS data when they were longer than 30 minutes. Comparing the speeds from VMS with those from the corresponding logbooks, we found that the vessels' speeds were between 2.5 kn and 5.0 kn in fishing. The c Hs interpolation method is a new choice for improving the accuracy of estimation of sailing trajectory, and the VMS can be used to determine the vessels' activities with the analysis of their trajectories and speeds. Therefore, when the fishery information is limited, VMS can be one of the important data sources for fisheries stock assessment, and more attention should be paid to its construction and application to fisheries stock assessment and management.展开更多
基金Supported by the National Natural Science Foundation for Young Scientists of China (No. 40801225)the Natural Science Foundation of Zhejiang Province (No. Y3090038)
文摘We used generalized additive models (GAM) to analyze the relationship between spatiotemporal factors and catch, and to estimate the monthly marine fishery yield of single otter trawls in Putuo district of Zhoushan, China. We used logbooks from five commercial fishing boats and data in government's monthly statistical reports. We developed two GAM models: one included temporal variables (month and hauling time) and spatial variables (longitude and latitude), and another included just two variables, month and the number of fishing boats. Our results suggest that temporal factors explained more of the variability in catch than spatial factors. Furthermore, month explained the majority of variation in catch. Change in spatial distribution of fleet had a temporal component as the boats fished within a relatively small area within the same month, but the area varied among months. The number of boats fishing in each month also explained a large proportion of the variation in catch. Engine power had no effect on catch. The pseudo-coefficients (PCf) of the two GAMs were 0.13 and 0.29 respectively, indicating the both had good fits. The model yielded estimates that were very similar to those in the governmental reports between January to September, with relative estimate errors (REE) of <18%. However, the yields in October and November were significantly underestimated, with REEs of 36% and 27%, respectively.
基金supported by the National Natural Science Foundation (No. 40801225)the Natural Science Foundation of Zhejiang Province (No. LY13D 010005)Young academic leader climbing program of Zhejiang Province (grant number pd 2013222)
文摘The original purpose of Vessel Monitoring System(VMS) is for enforcement and control of vessel sailing. With the application of VMS in fishing vessels, more and more population dynamic studies have used VMS data to improve the accuracy of fisheries stock assessment. In this paper, we simulated the trawl trajectory under different time intervals using the cubic Hermite spline(c Hs) interpolation method based on the VMS data of 8 single otter trawl vessels(totally 36000 data items) fishing in Zhoushan fishing ground from September 2012 to December 2012, and selected the appropriate time interval. We then determined vessels' activities(fishing or non-fishing) by comparing VMS speed data with the corresponding speeds from logbooks. The results showed that the error of simulated trajectory greatly increased with the increase of time intervals of VMS data when they were longer than 30 minutes. Comparing the speeds from VMS with those from the corresponding logbooks, we found that the vessels' speeds were between 2.5 kn and 5.0 kn in fishing. The c Hs interpolation method is a new choice for improving the accuracy of estimation of sailing trajectory, and the VMS can be used to determine the vessels' activities with the analysis of their trajectories and speeds. Therefore, when the fishery information is limited, VMS can be one of the important data sources for fisheries stock assessment, and more attention should be paid to its construction and application to fisheries stock assessment and management.