期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Working Condition Real-Time Monitoring Model of Lithium Ion Batteries Based on Distributed Parameter System and Single Particle Model
1
作者 黄亮 姚畅 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第5期623-628,I0002,共7页
Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ... Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM. 展开更多
关键词 Lithium ion battery Distributed parameter system single particle model Condition monitoring
下载PDF
Particle convective heat transfer near the wall in a supercritical water fluidized bed by single particle model coupled with CFD-DEM 被引量:3
2
作者 Tianning Zhang Zhen Wan Youjun Lu 《Particuology》 SCIE EI CAS CSCD 2023年第2期47-58,共12页
Supercritical water fluidized bed(SCWFB)is a promising reactor to gasify biomass or coal.Its optimization design is closely related to wall-to-bed heat transfer,where particle convective heat transfer plays an importa... Supercritical water fluidized bed(SCWFB)is a promising reactor to gasify biomass or coal.Its optimization design is closely related to wall-to-bed heat transfer,where particle convective heat transfer plays an important role.This paper evaluates the particle convective heat transfer coefficient(h_(pc))at the wall in SCWFB using the single particle model.The critical parameters in the single particle model which is difficult to get experimentally are obtained by the computational fluid dynamics-discrete element method(CFD-DEM).The contact statistics related to particle-to-wall heat transfer,such as contact number and contact distance,are also presented.The results show that particle residence time(τ),as the key parameter to evaluate h_(pc),is found to decrease with rising velocity,while increase with larger thermal boundary layer thickness.τfollows a gamma function initially adopted in the gas-solid fluidized bed,making it possible to evaluate h_(pc) in SCWFB by a simplified single particle model.The theoretical predicted h_(pc) tends to increase with rising thermal gradient thickness at a lower velocity(1.5 U_(mf)),while first decreases and then increases at higher velocity(1.75 and 2 U_(mf)).h_(pc) occupies 30%-57%of the overall wall-to-bed heat transfer coefficient for a particle diameter of 0.25 mm.The results are helpful to predict the overall wall-to-bed heat transfer coefficient in SCWFB combined with a reasonable fluid convective heat transfer model from a theoretical perspective. 展开更多
关键词 Supercritical water Fluidized bed particle residence time Discrete element method single particle model
原文传递
An analytical model for pyrolysis of a single biomass particle 被引量:3
3
作者 Mehdi Bidabadi Mohammad Rastegar Moghaddam +2 位作者 Seyed Alireza Mostafavi Farzad Faraji Dizaji Hossein Beidaghy Dizaji 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期350-359,共10页
Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste... Decreasing in emissions of greenhouse gases to confront the global warming needs to replace fossil fuels as the main doer of the world climate changes by renewable and clean fuels produced from biomass like wood waste which is neutral on the amount of CO2. An analytical and engineering model for pyrolysis process of a single biomass particle has been presented. Using a two-stage semi global kinetic model which includes both primary and secondary reactions, the effects of parameters like shape and size of particle as well as porosity on the particle temperature profile and product yields have been investigated. Comparison of the obtained results with experimental data shows that our results are in a reasonable agreement with previous researchers' works. Finally, a sensitivity analysis is done to determine the importance of each parameter on pyrolysis of a single biomass particle which is affected by many constant parameters. 展开更多
关键词 biomass pyrolysis analytical model single particle sensitivity analysis
下载PDF
Numerical simulation of diffusion process for oxidative dehydrogenation of butene to butadiene
4
作者 黄凯 林生 周建成 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期572-576,共5页
A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during t... A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during the oxidative dehydrogenation of butene to butadiene process. The verified model can be used to investigate the influence of catalyst diameter on the flow distribution inside the particle. The simulation results demonstrate that the mass fraction gradients of all species, temperature gradient and pressure gradient increase with the increase of the particle diameter. It means that there is a high intraparticle transfer resistance and strong diffusion when applying the large catalysts. The external particle mass transfer resistance is nearly constant under different particle diameters so that the effect of particle diameter at external diffusion can be ignored. A large particle diameter can lead to a high surface temperature, which indicates the external heat transfer resistance. Moreover, the selectivity of reaction may be changed with a variety of particle diameters so that choosing appropriate particle size can enhance the production of butadiene and optimize the reaction process. 展开更多
关键词 multi-scale model mass and heat transfer particle diameter oxidative dehydrogenation of butene to butadiene single particle model transfer resistance
下载PDF
Performance simulation method and state of health estimation for lithium-ion batteries based on aging-effect coupling model 被引量:3
5
作者 Deyu Fang Wentao Wu +5 位作者 Junfu Li Weizhe Yuan Tao Liu Changsong Dai Zhenbo Wang Ming Zhao 《Green Energy and Intelligent Transportation》 2023年第3期16-29,共14页
Accurate simulation of characteristics performance and state of health(SOH)estimation for lithium-ion batteries are critical for battery management systems(BMS)in electric vehicles.Battery simplified electrochemical m... Accurate simulation of characteristics performance and state of health(SOH)estimation for lithium-ion batteries are critical for battery management systems(BMS)in electric vehicles.Battery simplified electrochemical model(SEM)can achieve accurate estimation of battery terminal voltage with less computing resources.To ensure the applica-bility of life-cycle usage,degradation physics need to be involved in SEM models.This work conducts deep analysis on battery degradation physics and develops an aging-effect coupling model based on an existing improved single particle(ISP)model.Firstly,three mechanisms of solid electrolyte interface(SEI)film growth throughout life cycle are analyzed,and an SEI film growth model of lithium-ion battery is built coupled with the ISP model.Then,a series of identification conditions for individual cells are designed to non-destructively determine model parameters.Finally,battery aging experiment is designed to validate the battery performance simulation method and SOH estimation method.The validation results under different aging rates indicate that this method can accurately es-timate characteristics performance and SOH for lithium-ion batteries during the whole life cycle. 展开更多
关键词 Improved single particle model Failure physics Characteristics performance simulation State of health estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部