In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of ...In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.展开更多
Single Phase Induction Motor(SPIM)is widely used in industries at starting stage to provide high starting torque.The objective of the work is to develop a drive for Single Phase Induction Motor that does not use a sta...Single Phase Induction Motor(SPIM)is widely used in industries at starting stage to provide high starting torque.The objective of the work is to develop a drive for Single Phase Induction Motor that does not use a start or run capacitor.In this work,the researchers present the details about Maximum Power Point Tracking using series-compensated Buck Boost Converter,resonant Direct Current(DC)to Alternate Current(AC)inverter and matrix converter-based drive.The proposed method provides a variable starting torque feature that can be adjusted depending upon machine load to ensure Power Quality(PQ).The system uses Series Compensated Buck Boost Converter(SCBBC)to derive the power from solar source and a Partial Resonant Inverter(PRI)between the Matrix Converter(MC)and DC link battery to reduce the switching loss.The application of Space Vector Pulse Width Modulation(SVPWM)ensures the improvement of power quality at driving terminals of SPIM.The proposed system has been math-ematically modelled and simulated in MATLAB SIMULINK environment and was validated using standardized experimental verification.展开更多
文摘In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.
文摘Single Phase Induction Motor(SPIM)is widely used in industries at starting stage to provide high starting torque.The objective of the work is to develop a drive for Single Phase Induction Motor that does not use a start or run capacitor.In this work,the researchers present the details about Maximum Power Point Tracking using series-compensated Buck Boost Converter,resonant Direct Current(DC)to Alternate Current(AC)inverter and matrix converter-based drive.The proposed method provides a variable starting torque feature that can be adjusted depending upon machine load to ensure Power Quality(PQ).The system uses Series Compensated Buck Boost Converter(SCBBC)to derive the power from solar source and a Partial Resonant Inverter(PRI)between the Matrix Converter(MC)and DC link battery to reduce the switching loss.The application of Space Vector Pulse Width Modulation(SVPWM)ensures the improvement of power quality at driving terminals of SPIM.The proposed system has been math-ematically modelled and simulated in MATLAB SIMULINK environment and was validated using standardized experimental verification.