期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model 被引量:2
1
作者 ZHANG Lei DOU Hongen +6 位作者 WANG Tianzhi WANG Hongliang PENG Yi ZHANG Jifeng LIU Zongshang MI Lan JIANG Liwei 《Petroleum Exploration and Development》 CSCD 2022年第5期1150-1160,共11页
Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an... Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction. 展开更多
关键词 single well production prediction temporal convolutional network time series prediction water flooding reservoir
下载PDF
Improved deep mixed kernel randomized network for wind speed prediction
2
作者 Vijaya Krishna Rayi Ranjeeta Bisoi +1 位作者 S.P.Mishra P.K.Dash 《Clean Energy》 EI CSCD 2023年第5期1006-1031,共26页
Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the litera... Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the literature for wind speed prediction,their accuracies are not yet very reliable.Therefore,in this paper,a new hybrid intelligent technique named the deep mixed kernel random vector functional-link network auto-encoder(AE)is proposed for wind speed prediction.The proposed method eliminates manual tuning of hidden nodes with random weights and biases,providing prediction model generalization and representation learning.This reduces reconstruction error due to the exact inversion of the kernel matrix,unlike the pseudo-inverse in a random vector functional-link network,and short-ens the execution time.Furthermore,the presence of a direct link from the input to the output reduces the complexity of the prediction model and improves the prediction accuracy.The kernel parameters and coefficients of the mixed kernel system are optimized using a new chaotic sine–cosine Levy flight optimization technique.The lowest errors in terms of mean absolute error(0.4139),mean absolute percentage error(4.0081),root mean square error(0.4843),standard deviation error(1.1431)and index of agreement(0.9733)prove the efficiency of the proposed model in comparison with other deep learning models such as deep AEs,deep kernel extreme learning ma-chine AEs,deep kernel random vector functional-link network AEs,benchmark models such as least square support vector machine,autoregressive integrated moving average,extreme learning machines and their hybrid models along with different state-of-the-art methods. 展开更多
关键词 deep neural network mixed kernel random vector functional network auto-encoder chaotic sine-cosine Levy flight optimization single and multistep wind speed prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部