This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type...This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.展开更多
In Tian Qin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic pro...In Tian Qin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic properties. Here we present a single frequency modulation method based on a torsion pendulum to measure the remanent magnetic moment mr of 1.1 kg dummy copper test mass, and the measurement result is(6.45 ± 0.04(stat) ± 0.07(syst)) × 10^(-8)A · m^(2). The measurement precision of the mr is about 0.9 n A · m^(2), well below the present measurement requirement of Tian Qin. The method is particularly useful for measuring extremely low magnetic properties of the materials for use in the construction of space-borne gravitational wave detection and other precision scientific apparatus.展开更多
Based on the theory of the passive hydrogen maser, along with the technology of frequency modulation and modulation transfer spectroscopy, the theoretical expression of the single frequency modulation for the passive ...Based on the theory of the passive hydrogen maser, along with the technology of frequency modulation and modulation transfer spectroscopy, the theoretical expression of the single frequency modulation for the passive hydrogen maser and the function of the cavity and H line error signals separation are derived, which are basically coincident with the experiment. The absorption and dispersion spectrum curves with different resonance widths show that the cavity and hydrogen transition serve as discriminators, and the two error signals can be separated. Through the calculations of the two error signals in the passive hydrogen maser, it analyzes the traditional method of the two error signals separation, and then describes a new improved method for the passive hydrogen servo loops consisting in the use of a single modulation frequency and frequency discrimination. A null interaction of the two error signals for the new selection of the phase setting is deduced theoretically and validated by the simulation. The preliminary experimental result confirms the feasibility of this new approach, which can reduce the influence from the cavity frequency variety on the crystal oscillator and contribute significantly to the long term performance of the passive hydrogen maser.展开更多
This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described...This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16展开更多
Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,su...Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,sulfide oxidation reactions in the sulfur cathode,and the lithium dendrite growth resulted from uncontrollable lithium behaviors in lithium anode have inhibited high-rate conversions and uniform deposition to achieve high performances.Thanks to the“adsorption-catalysis”synergetic effects,the reaction kinetics of sulfur reduction reactions/sulfide oxidation reactions composed of the delithiation of Li_(2)S and the interconversions of sulfur species are propelled by lowering the delithiation/diffusion energy barriers,inhibiting polysulfide shuttling.Meanwhile,the anodic plating kinetic behaviors modulated by the catalysts tend to uniformize without dendrite growth.In this review,the various active catalysts in modulating lithium behaviors are summarized,especially for the defect-rich catalysts and single atomic catalysts.The working mechanisms of these highly active catalysts revealed from theoretical simulation to in situ/operando characterizations are also highlighted.Furthermore,the opportunities of future higher performance enhancement to realize practical applications of lithium–sulfur batteries are prospected,shedding light on the future practical development.展开更多
The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image...The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.展开更多
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a...Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.展开更多
In this paper,the nature and origin of single event effects(SEE) are studied by injecting laser pulses into different circuit blocks,combining with analysis to map pulse width modulators circuitry in the microchip die...In this paper,the nature and origin of single event effects(SEE) are studied by injecting laser pulses into different circuit blocks,combining with analysis to map pulse width modulators circuitry in the microchip die.A time-domain error-identification method is used in the temporal characteristic analysis of SEE.SEE signatures of different injection times are compared.More serious SEE are observed when the laser shot occurs on a rising edge of the device output for blocks of the error amplifier,current sense comparator,and T and SR latches.展开更多
By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calcu...By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.展开更多
An injection-seeded single-frequency Q-switched Nd:YAG laser is accomplished by using a phase modulated rampfire technique. A RbTiOPO4(RTP) electro-optic crystal is selected for effective optical path length modula...An injection-seeded single-frequency Q-switched Nd:YAG laser is accomplished by using a phase modulated rampfire technique. A RbTiOPO4(RTP) electro-optic crystal is selected for effective optical path length modulation of the slave self-filtering unstable resonator. This single-frequency laser is capable of producing 50 m J pulse energy at 1 Hz repetition rate with a pulse width of 16 ns. The standard deviation of laser pulse intensity for consecutive 100 shots from the mean pulse intensity is less than 1.05%. A spectral linewidth of less than 0.5 pm with a frequency jitter of about 14 fm over30 min is obtained.展开更多
The purpose of this study was to grasp current potential problems of dose error in intensity-modulated proton therapy (IMPT) plans. We were interested in dose differences of the Varian Eclipse treatment planning syste...The purpose of this study was to grasp current potential problems of dose error in intensity-modulated proton therapy (IMPT) plans. We were interested in dose differences of the Varian Eclipse treatment planning system (TPS) and the fast dose calculation method (FDC) for single-field optimization (SFO) and multi-field optimization (MFO) IMPT plans. In addition, because some authors have reported dosimetric benefit of a proton arc therapy with ultimate multi-fields in recent years, we wanted to evaluate how the number of fields and beam angles affect the differences for IMPT plans. Therefore, for one brain cancer patient with a large heterogeneity, SFO and MFO IMPT plans with various multi-angle beams were planned by the TPS. Dose distributions for each IMPT plan were calculated by both the TPS’s conventional pencil beam algorithm and the FDC. The dosimetric parameters were compared between the two algorithms. The TPS overestimated 400 - 500 cGy (RBE) for minimum dose to the CTV relative to the dose calculated by the FDC. These differences indicate clinically relevant effect on clinical results. In addition, we observed that the maximum difference in dose calculated between the TPS and the FDC was about 900 cGy (RBE) for the right optic nerve, and this quantity also has a possibility to have a clinical effect. The major difference was not seen in calculations for SFO IMPT planning and those for MFO IMPT planning. Differences between the TPS and the FDC in SFO and MFO IMPT plans depend strongly on beam arrangement and the presence of a heterogeneous body. We advocate use of a Monte Carlo method in proton treatment planning to deliver the most precise proton dose in IMPT.展开更多
A numerical model for steady state analysis and analytical expressions for the AM and FM modulation responses of DFB lasers are presented.The small signal modulation responses of 3 phase shift(PS) DFB is investigate...A numerical model for steady state analysis and analytical expressions for the AM and FM modulation responses of DFB lasers are presented.The small signal modulation responses of 3 phase shift(PS) DFB is investigated for the first time.A new method(Vector Newton method) to obtain multiple longitudinal mode of DFB lasers is used.It is demonstrated that this method is suitable for obtaining multiple solution of high nonlinear equations.Longitudinal photon density distribution and multiple longitudinal mode of 3PS DFB and simple DFB lasers are analyzed.The results show that modulation response characteristics of 3PS DFB laser is as good as that of DFB,and PS can weaken the longitudinal spatial hole burning (LHSB) effect and is in favor of single longitudinal mode operating of lasers.展开更多
The quantum fluctuation of photon counting limits the field application of optical time domain reflection. A method of photon counts modulation optics time domain reflection with single photon detection at 1.55 μm is...The quantum fluctuation of photon counting limits the field application of optical time domain reflection. A method of photon counts modulation optics time domain reflection with single photon detection at 1.55 μm is presented. The influence of quantum fluctuation can be effectively controlled by demodulation technology since quantum fluctuation shows a uniform distribution in the frequency domain. Combined with the changing of the integration time of the lock-in amplifier, the signal to noise ratio is significantly enhanced. Accordingly the signal to noise improvement ratio reaches 31.7 dB compared with the direct photon counting measurement.展开更多
A new method based on a chirped optical pulse interferogram has been proposed to measure terahertz radiation. The frequency domain phase information of the interferogram is used to extract the time-domain terahertz pu...A new method based on a chirped optical pulse interferogram has been proposed to measure terahertz radiation. The frequency domain phase information of the interferogram is used to extract the time-domain terahertz pulse waveform. In principle, the resolution of our method can be as high as the unchirped probe pulse duration, with the advantages of relatively simple measurement setup and signal extracting techniques.展开更多
A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for r...A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.展开更多
Single pixel imaging is a novel imaging technique,and it becomes a focus of research in recent years due to its advantages such as high lateral resolution and high robustness to noise.Imaging speed is one of the criti...Single pixel imaging is a novel imaging technique,and it becomes a focus of research in recent years due to its advantages such as high lateral resolution and high robustness to noise.Imaging speed is one of the critical shortcomings,which limits the further development and applications of this technique.In this paper,we focus on the issues of imaging efficiency of a single pixel imaging system.We propose semi-continuous wavelet transform(SCWT)protocol and introduce the protocol into the single pixel imaging system.The proposed protocol is something between continuous wavelet transform and discrete wavelet transform,which allows the usage of those smooth(usually non-orthogonal,and they have advantages in representing smooth signals compressively,which can improve the imaging speed of single pixel imaging)wavelets and with limited numbers of measurements.The proposed imaging scheme is studied,and verified by simulations and experiments.Furthermore,a comparison between our proposed scheme and existing imaging schemes are given.According to the results,the proposed SCWT scheme is proved to be effective in reconstructing a image compressively.展开更多
Powered by electricity from renewable energies,electrochemical reduction of CO_(2)could not only efficiently alleviate the excess emission of CO_(2),but also produce many kinds of valuable chemical feedstocks.Among va...Powered by electricity from renewable energies,electrochemical reduction of CO_(2)could not only efficiently alleviate the excess emission of CO_(2),but also produce many kinds of valuable chemical feedstocks.Among various catalysts,single atom catalysts(SACs)have attracted much attention due to their high atom utilization efficiency and expressive catalytic performances.Additionally,SACs serve as an ideal platform for the investigation of complex reaction pathways and mechanisms thanks to their explicit active sites.In this review,the possible re-action pathways for the generation of various products(mainly C1 products for SACs)were firstly summarized.Then,recent progress of SACs for electrochemical reduction of CO_(2)was discussed in aspect of different central metal sites.As the most popular and efficient coordination modulation strategy,introducing heteroatom was then reviewed.Moreover,as an extension of SACs,the development of dual atom catalysts was also briefly discussed.At last,some issues and challenges regarding the SACs for CO_(2)reduction reaction(CO_(2)RR)were listed,followed by corresponding suggestions.展开更多
A single-frequency retrievable phase modulated multi-tone fiber amplifier is presented in theory and demonstrated in experiment. A multi-tone seed laser generated by a sine wave phase modulated single-frequency laser ...A single-frequency retrievable phase modulated multi-tone fiber amplifier is presented in theory and demonstrated in experiment. A multi-tone seed laser generated by a sine wave phase modulated single-frequency laser is employed for stimulated Brillouin scattering suppression in an all-fiber amplifier. A demodulation signal which is π phase shifted with respect to the modulation signal is used to retrieve the single-frequency laser from the multi-tone laser. In experiment, we first optimize the all-fiber master-oscillator power-amplifier. With this amplifier, we demonstrate a single-frequency retrievable multi-tone laser with 330-W output when driven by the multi-tone seed, while the ultimate output power is only 130 W when driven by the single-frequency laser. Then, we carry out an experiment for retrieving the single-frequency laser from the amplified multi-tone laser. Results indicate that the single-frequency laser can be retrieved with a sideband suppression of more than 20 dB. Retrieving an even higher power single-frequency laser is possible if a high power demodulator is available.展开更多
The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic gr...The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.62071441 and 61701464)in part by the Fundamental Research Funds for the Central Universities(No.202151006).
文摘This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.
基金supported by the National Key R&D Program of China (Grant No. 2020YFC2200500)the National Natural Science Foundation of China (Grant Nos. 12075325, 12005308, and 11605065)。
文摘In Tian Qin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic properties. Here we present a single frequency modulation method based on a torsion pendulum to measure the remanent magnetic moment mr of 1.1 kg dummy copper test mass, and the measurement result is(6.45 ± 0.04(stat) ± 0.07(syst)) × 10^(-8)A · m^(2). The measurement precision of the mr is about 0.9 n A · m^(2), well below the present measurement requirement of Tian Qin. The method is particularly useful for measuring extremely low magnetic properties of the materials for use in the construction of space-borne gravitational wave detection and other precision scientific apparatus.
基金supported by the Next Generation of Beidou Navigation Satellite(GFZX0301020104)
文摘Based on the theory of the passive hydrogen maser, along with the technology of frequency modulation and modulation transfer spectroscopy, the theoretical expression of the single frequency modulation for the passive hydrogen maser and the function of the cavity and H line error signals separation are derived, which are basically coincident with the experiment. The absorption and dispersion spectrum curves with different resonance widths show that the cavity and hydrogen transition serve as discriminators, and the two error signals can be separated. Through the calculations of the two error signals in the passive hydrogen maser, it analyzes the traditional method of the two error signals separation, and then describes a new improved method for the passive hydrogen servo loops consisting in the use of a single modulation frequency and frequency discrimination. A null interaction of the two error signals for the new selection of the phase setting is deduced theoretically and validated by the simulation. The preliminary experimental result confirms the feasibility of this new approach, which can reduce the influence from the cavity frequency variety on the crystal oscillator and contribute significantly to the long term performance of the passive hydrogen maser.
文摘This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16
基金fellowship funding supported by the Alexander von Humboldt Foundationfinancial funding support from the Natural Science Foundation of Jiangsu Province(BK.20210636)Natural Science Foundation of China(21773294 and 21972164)。
文摘Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,sulfide oxidation reactions in the sulfur cathode,and the lithium dendrite growth resulted from uncontrollable lithium behaviors in lithium anode have inhibited high-rate conversions and uniform deposition to achieve high performances.Thanks to the“adsorption-catalysis”synergetic effects,the reaction kinetics of sulfur reduction reactions/sulfide oxidation reactions composed of the delithiation of Li_(2)S and the interconversions of sulfur species are propelled by lowering the delithiation/diffusion energy barriers,inhibiting polysulfide shuttling.Meanwhile,the anodic plating kinetic behaviors modulated by the catalysts tend to uniformize without dendrite growth.In this review,the various active catalysts in modulating lithium behaviors are summarized,especially for the defect-rich catalysts and single atomic catalysts.The working mechanisms of these highly active catalysts revealed from theoretical simulation to in situ/operando characterizations are also highlighted.Furthermore,the opportunities of future higher performance enhancement to realize practical applications of lithium–sulfur batteries are prospected,shedding light on the future practical development.
基金supported by the National Natural Science Foundation of China under Grant no.41975183,and Grant no.41875184 and Supported by a grant from State Key Laboratory of Resources and Environmental Information System.
文摘The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.
基金supported by the National Natural Science Foundation of China(61473176,61402260,61573225)the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities(ZR2015JL021,ZR2015JL003)the Open Program from the State Key Laboratory of Management and Control for Complex Systems(20140102)
文摘Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.
基金supported by the National Basic Research Program of China(No.613224)
文摘In this paper,the nature and origin of single event effects(SEE) are studied by injecting laser pulses into different circuit blocks,combining with analysis to map pulse width modulators circuitry in the microchip die.A time-domain error-identification method is used in the temporal characteristic analysis of SEE.SEE signatures of different injection times are compared.More serious SEE are observed when the laser shot occurs on a rising edge of the device output for blocks of the error amplifier,current sense comparator,and T and SR latches.
基金supported by the Key Project Scientific Research Foundation from the Education Department of Hubei Province of China(Grant No D200725001)
文摘By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB1104500 and 2016YFB0701000)
文摘An injection-seeded single-frequency Q-switched Nd:YAG laser is accomplished by using a phase modulated rampfire technique. A RbTiOPO4(RTP) electro-optic crystal is selected for effective optical path length modulation of the slave self-filtering unstable resonator. This single-frequency laser is capable of producing 50 m J pulse energy at 1 Hz repetition rate with a pulse width of 16 ns. The standard deviation of laser pulse intensity for consecutive 100 shots from the mean pulse intensity is less than 1.05%. A spectral linewidth of less than 0.5 pm with a frequency jitter of about 14 fm over30 min is obtained.
文摘The purpose of this study was to grasp current potential problems of dose error in intensity-modulated proton therapy (IMPT) plans. We were interested in dose differences of the Varian Eclipse treatment planning system (TPS) and the fast dose calculation method (FDC) for single-field optimization (SFO) and multi-field optimization (MFO) IMPT plans. In addition, because some authors have reported dosimetric benefit of a proton arc therapy with ultimate multi-fields in recent years, we wanted to evaluate how the number of fields and beam angles affect the differences for IMPT plans. Therefore, for one brain cancer patient with a large heterogeneity, SFO and MFO IMPT plans with various multi-angle beams were planned by the TPS. Dose distributions for each IMPT plan were calculated by both the TPS’s conventional pencil beam algorithm and the FDC. The dosimetric parameters were compared between the two algorithms. The TPS overestimated 400 - 500 cGy (RBE) for minimum dose to the CTV relative to the dose calculated by the FDC. These differences indicate clinically relevant effect on clinical results. In addition, we observed that the maximum difference in dose calculated between the TPS and the FDC was about 900 cGy (RBE) for the right optic nerve, and this quantity also has a possibility to have a clinical effect. The major difference was not seen in calculations for SFO IMPT planning and those for MFO IMPT planning. Differences between the TPS and the FDC in SFO and MFO IMPT plans depend strongly on beam arrangement and the presence of a heterogeneous body. We advocate use of a Monte Carlo method in proton treatment planning to deliver the most precise proton dose in IMPT.
文摘A numerical model for steady state analysis and analytical expressions for the AM and FM modulation responses of DFB lasers are presented.The small signal modulation responses of 3 phase shift(PS) DFB is investigated for the first time.A new method(Vector Newton method) to obtain multiple longitudinal mode of DFB lasers is used.It is demonstrated that this method is suitable for obtaining multiple solution of high nonlinear equations.Longitudinal photon density distribution and multiple longitudinal mode of 3PS DFB and simple DFB lasers are analyzed.The results show that modulation response characteristics of 3PS DFB laser is as good as that of DFB,and PS can weaken the longitudinal spatial hole burning (LHSB) effect and is in favor of single longitudinal mode operating of lasers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674086 and 10934004)the National Natural Science Foundation for Excellent Research Team (Grant No. 60821004)+2 种基金the National Key Basic Research and Development Program of China (Grant No. 2010CB923103)the National High Technology Research and Development Program of China (Grant No. 2009AA01Z319)the Program for Top Science and Technology Innovation Teams and Top Young and Middleaged Innovative Talents of Shanxi Province
文摘The quantum fluctuation of photon counting limits the field application of optical time domain reflection. A method of photon counts modulation optics time domain reflection with single photon detection at 1.55 μm is presented. The influence of quantum fluctuation can be effectively controlled by demodulation technology since quantum fluctuation shows a uniform distribution in the frequency domain. Combined with the changing of the integration time of the lock-in amplifier, the signal to noise ratio is significantly enhanced. Accordingly the signal to noise improvement ratio reaches 31.7 dB compared with the direct photon counting measurement.
基金supported by National Natural Science Foundation of China(Nos.10925421,10734130)National Basic Research Program of China(973Program)(Nos.2007CB815100,2007CB310406)
文摘A new method based on a chirped optical pulse interferogram has been proposed to measure terahertz radiation. The frequency domain phase information of the interferogram is used to extract the time-domain terahertz pulse waveform. In principle, the resolution of our method can be as high as the unchirped probe pulse duration, with the advantages of relatively simple measurement setup and signal extracting techniques.
基金Project supported by Tsinghua University Initiative Scientific Research Program,China(Grant No.2014z21035)
文摘A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.
基金the Natural Science Foundation of Jilin Province,China(Grand No.YDZJ202101ZYTS030)。
文摘Single pixel imaging is a novel imaging technique,and it becomes a focus of research in recent years due to its advantages such as high lateral resolution and high robustness to noise.Imaging speed is one of the critical shortcomings,which limits the further development and applications of this technique.In this paper,we focus on the issues of imaging efficiency of a single pixel imaging system.We propose semi-continuous wavelet transform(SCWT)protocol and introduce the protocol into the single pixel imaging system.The proposed protocol is something between continuous wavelet transform and discrete wavelet transform,which allows the usage of those smooth(usually non-orthogonal,and they have advantages in representing smooth signals compressively,which can improve the imaging speed of single pixel imaging)wavelets and with limited numbers of measurements.The proposed imaging scheme is studied,and verified by simulations and experiments.Furthermore,a comparison between our proposed scheme and existing imaging schemes are given.According to the results,the proposed SCWT scheme is proved to be effective in reconstructing a image compressively.
文摘Powered by electricity from renewable energies,electrochemical reduction of CO_(2)could not only efficiently alleviate the excess emission of CO_(2),but also produce many kinds of valuable chemical feedstocks.Among various catalysts,single atom catalysts(SACs)have attracted much attention due to their high atom utilization efficiency and expressive catalytic performances.Additionally,SACs serve as an ideal platform for the investigation of complex reaction pathways and mechanisms thanks to their explicit active sites.In this review,the possible re-action pathways for the generation of various products(mainly C1 products for SACs)were firstly summarized.Then,recent progress of SACs for electrochemical reduction of CO_(2)was discussed in aspect of different central metal sites.As the most popular and efficient coordination modulation strategy,introducing heteroatom was then reviewed.Moreover,as an extension of SACs,the development of dual atom catalysts was also briefly discussed.At last,some issues and challenges regarding the SACs for CO_(2)reduction reaction(CO_(2)RR)were listed,followed by corresponding suggestions.
基金Project supported by the New Century Excellent Talents in University, Ministry of Education of China and the Scientific Research Project in National University Defense of Technology
文摘A single-frequency retrievable phase modulated multi-tone fiber amplifier is presented in theory and demonstrated in experiment. A multi-tone seed laser generated by a sine wave phase modulated single-frequency laser is employed for stimulated Brillouin scattering suppression in an all-fiber amplifier. A demodulation signal which is π phase shifted with respect to the modulation signal is used to retrieve the single-frequency laser from the multi-tone laser. In experiment, we first optimize the all-fiber master-oscillator power-amplifier. With this amplifier, we demonstrate a single-frequency retrievable multi-tone laser with 330-W output when driven by the multi-tone seed, while the ultimate output power is only 130 W when driven by the single-frequency laser. Then, we carry out an experiment for retrieving the single-frequency laser from the amplified multi-tone laser. Results indicate that the single-frequency laser can be retrieved with a sideband suppression of more than 20 dB. Retrieving an even higher power single-frequency laser is possible if a high power demodulator is available.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(Grant No.KGFZD-125-13-006)
文摘The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.