A new technique to generate a millimeter(mm)-wave carrier of 32.57 GHz(f_(LO)=10.85 GHz) with single sideband modulation(SSB) for radio-over-fiber(RoF) systems is experimentally demonstrated by using stimula...A new technique to generate a millimeter(mm)-wave carrier of 32.57 GHz(f_(LO)=10.85 GHz) with single sideband modulation(SSB) for radio-over-fiber(RoF) systems is experimentally demonstrated by using stimulated Brillouin scattering(SBS).The SSB is realized by directly amplifying the +3rd sideband of the modulated optical carrier in the process of SBS.The pump wave is provided through a double Brillouin scattering frequency shifting configuration.The use of the same laser source to generate the pump wave ensures the stability of the mm-wave generation system since the relative frequency shift between them can be eliminated.In addition, the mm-wave carrier obtains an RF power gain of 21 dB with the SBS amplification and a 3-dB bandwidth of 10kHz.展开更多
Optical beating is the usual approach to generation of microwave signals.However,the highest frequency achievable for microwave signals is limited by the bandwidths of optoelectronic devices.To maximize the microwave ...Optical beating is the usual approach to generation of microwave signals.However,the highest frequency achievable for microwave signals is limited by the bandwidths of optoelectronic devices.To maximize the microwave frequency with a limited bandwidth of a photodetector(PD)and relieve the bandwidth bottleneck,we propose to generate microwave signals with the single sideband(SSB)format by beating a continuous wave(CW)light with an optical SSB signal.By simply adjusting the frequency diference between the CW light and the carrier of the optical SSB signal,the frequency of the generated microwave SSB signal is changed correspondingly.In the experiment,amplitude shift keying(ASK)microwave signals with the SSB format are successfully generated with diferent carrier frequencies and coding bit rates,and the recovered coding information agrees well with the original pseudo random binary sequence(PRBS)of 2^(7)−1 bits.The proposed approach can signifcantly relieve the bandwidth restriction set by optoelectronic devices in high-speed microwave communication systems.展开更多
基金Project supported by the Meteorology Industry Research Project of China(Nos.GYHY200806033,GYHY201006045)the National Natural Science Foundation of China(Nos.61021003,61090391,60837001,60820106004)+1 种基金the National Basic Research Program of China (No.2009AA03Z409)the Open Fund of Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),Ministry of Education
文摘A new technique to generate a millimeter(mm)-wave carrier of 32.57 GHz(f_(LO)=10.85 GHz) with single sideband modulation(SSB) for radio-over-fiber(RoF) systems is experimentally demonstrated by using stimulated Brillouin scattering(SBS).The SSB is realized by directly amplifying the +3rd sideband of the modulated optical carrier in the process of SBS.The pump wave is provided through a double Brillouin scattering frequency shifting configuration.The use of the same laser source to generate the pump wave ensures the stability of the mm-wave generation system since the relative frequency shift between them can be eliminated.In addition, the mm-wave carrier obtains an RF power gain of 21 dB with the SBS amplification and a 3-dB bandwidth of 10kHz.
基金the National Natural Science Foundation of China(Grant No.61975249)the National Key Research and Development Program of China(Nos.2018YFB2201700 and 2018YFA0704403)the Program for HUST Academic Frontier Youth Team(No.2018QYTD08).
文摘Optical beating is the usual approach to generation of microwave signals.However,the highest frequency achievable for microwave signals is limited by the bandwidths of optoelectronic devices.To maximize the microwave frequency with a limited bandwidth of a photodetector(PD)and relieve the bandwidth bottleneck,we propose to generate microwave signals with the single sideband(SSB)format by beating a continuous wave(CW)light with an optical SSB signal.By simply adjusting the frequency diference between the CW light and the carrier of the optical SSB signal,the frequency of the generated microwave SSB signal is changed correspondingly.In the experiment,amplitude shift keying(ASK)microwave signals with the SSB format are successfully generated with diferent carrier frequencies and coding bit rates,and the recovered coding information agrees well with the original pseudo random binary sequence(PRBS)of 2^(7)−1 bits.The proposed approach can signifcantly relieve the bandwidth restriction set by optoelectronic devices in high-speed microwave communication systems.