Single source molecular precursors (SSPs) provide an opportunity to get control over the microstructure of nanomaterials at atomic level. A SSP was designed and developed for the synthesis of ZnO/TiO2 nanocomposite ...Single source molecular precursors (SSPs) provide an opportunity to get control over the microstructure of nanomaterials at atomic level. A SSP was designed and developed for the synthesis of ZnO/TiO2 nanocomposite by sol gel method. In a typical synthe-sis process, a bimetallic molecular compound with chemical formula [Cl2TiZn(dmae)4] (dmae=dimethylaminoethanol) was synthesized and its chemical composition was deter-mined by elemental analysis. The obtained compound has shown excellent solubility in common organic solvents, a prerequisite for its use in sol gel method as SSP. The SSP ob-tained was controllably hydrolyzed by adding equimolar amount of water using ethanol as solvent to get ZnO/TiO2 nanocomposite gel. The resulting gel was precipitated at pH=9 and sintered at 200 ℃ (T200), 400℃ (T400), and 600℃ (T600). The XRD analyses have shown that the as synthesized (non-sintered, T00) powder was amorphous. However, the crystallinity improved upon sintering, and the XRD analyses revealed that the resulting nanomaterials were composed of mixed oxides i.e., ZnO and TiO2. The ZnO was in wurtzite (hexagonal) while the TiO2 was in brookite (orthorhombic) phase. The increase in particlesize was further confirmed from BET analysis and SEM micrographs. The IR spectra ob-tained for the resulting powder have shown the peculiar vibrational bands for Zn-O and Ti-O. Furthermore, the IR spectra revealed that the non-sintered ZnO/TiO2 nanocomposite had significant number of OH group which was removed upon sintering. The photocatalytic activities of the ZnO/TiO2 nanocomposites were tested. All the samples have shown good photocatalytic activities. However, the T400 has shown higher activity than the T00, T200, and T600. The higher photocatalytic activity of T400 than T00, T200, and T600 may be due to improved crystallinity which ensures efficient grain boundary interfaces.展开更多
Stable binary single source precursors (SSP) for the deposition of thin films of ceramic semiconductors of composition SnO·GeO were synthesized by close circuit chemical vapour deposition (CCCVD) method. Elem...Stable binary single source precursors (SSP) for the deposition of thin films of ceramic semiconductors of composition SnO·GeO were synthesized by close circuit chemical vapour deposition (CCCVD) method. Elemental analysis and spectroscopic techniques were used to characterize the precursors. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to characterize the thin films. Resistivity measurements were conducted to show that the films are of semiconducting nature.展开更多
The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum...The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied.The second-order correlation function at zero delay time is much smaller than 0.1,which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source.The effects of the irradiation duration on the fluorescence from single quantum dots are analyzed.The experimental results can be explained by a recombination model including a multi-nonradiative recombination center model and a multi-charged model.展开更多
Recently the performance of the quantum key distribution (QKD) is substantially improved by the decoy state method and the non-orthogonal encoding protocol, separately. In this paper, a practical non-orthogonal deco...Recently the performance of the quantum key distribution (QKD) is substantially improved by the decoy state method and the non-orthogonal encoding protocol, separately. In this paper, a practical non-orthogonal decoy state protocol with a heralded single photon source (HSPS) for QKD is presented. The protocol is based on 4 states with different intensities. i.e. one signal state and three decoy states. The signal state is for generating keys; the decoy states are for detecting the eavesdropping and estimating the fraction of single-photon and two-photon pulses. We have discussed three cases of this protocol, i.e. the general case, the optimal case and the special case. Moreover, the final key rate over transmission distance is simulated. For the low dark count of the HSPS and the utilization of the two-photon pulses, our protocol has a higher key rate and a longer transmission distance than any other decoy state protocol.展开更多
Measurement-device-independent quantum key distribution (MDI-QKD) can be immune to all detector side- channel attacks and guarantee the information-theoretical security even with uncharacterized single photon detect...Measurement-device-independent quantum key distribution (MDI-QKD) can be immune to all detector side- channel attacks and guarantee the information-theoretical security even with uncharacterized single photon detectors. MDI-QKD has been demonstrated in both laboratories and field-tests by using attenuated lasers combined with the decoy-state technique. However, it is a critical assumption that the sources used by legitimate participants are trusted in MDI-QKD. Hence, it is possible that a potential security risk exists. Here we propose a new scheme of polarization-encoding-based MDI-QKD with a single untrusted source, by which the complexity of the synchronization system can be reduced and the success rate of the Bell-state measurement can be improved. Meanwhile, the decoy-state method is employed to avoid the security issues introduced by a non-ideal single photon source. We also derive a security analysis of the proposed system. In addition, it seems to be a promising candidate for the implementation for QKD network in the near future.展开更多
Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is...Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is that each sub-dictionary possesses discriminative information about its corresponding source,and this information can be used to recover almost every sample from that source.However,in a more general sense,the samples from a source are composed not only of discriminative information but also common information shared with other sources.This paper proposes learning a discriminative high-fidelity dictionary to improve the separation performance.The innovations are threefold.Firstly,an extra sub-dictionary was combined into a conventional union dictionary to ensure that the source-specific sub-dictionaries can capture only the purely discriminative information for their corresponding sources because the common information is collected in the additional sub-dictionary.Secondly,a task-driven learning algorithm is designed to optimize the new union dictionary and a set of weights that indicate how much of the common information should be allocated to each source.Thirdly,a source separation scheme based on the learned dictionary is presented.Experimental results on a human speech dataset yield evidence that our algorithm can achieve better separation performance than either state-of-the-art or traditional algorithms.展开更多
We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a pa...We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.展开更多
3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage ...3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)展开更多
In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mod...In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade.By including three transition pathways,we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally.Based on the master equation,we simulate the system evolution and find that the analytical solutions match well with the numerical results.Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.展开更多
The authors demonstrate a Bull's eye cavity design that is composed of circular Bragg gratings and micropillar optical cavity in 4H silicon carbide(4H-SiC) for single photon emission. Numerical calculations are us...The authors demonstrate a Bull's eye cavity design that is composed of circular Bragg gratings and micropillar optical cavity in 4H silicon carbide(4H-SiC) for single photon emission. Numerical calculations are used to investigate and optimize the emission rate and directionality of emission. Thanks to the optical mode resonances and Bragg reflections,the radiative decay rates of a dipole embedded in the cavity center is enhanced by 12.8 times as compared to that from a bulk 4H-SiC. In particular, a convergent angular distribution of the emission in far field is simultaneously achieved, which remarkably boost the collection efficiency. The findings of this work provide an alternative architecture to manipulate light-matter interactions for achieving high-efficient SiC single photon sources towards applications in quantum information technologies.展开更多
A new heterobimetallic nitrilotriacetatoperoxotitanate complex with the formula of [Mn(H2O)5]2[Ti(O2)2O(nta)2]·7H2O (1, C6H6O6N = H3nta) has been isolated in pure crystals. It was characterized by element...A new heterobimetallic nitrilotriacetatoperoxotitanate complex with the formula of [Mn(H2O)5]2[Ti(O2)2O(nta)2]·7H2O (1, C6H6O6N = H3nta) has been isolated in pure crystals. It was characterized by elemental analyses, IR, thermal analysis (TGA) and single-crystal X-ray diffraction. Complex 1 crystallizes in monoclinic, space group C2/c with a = 15.088(3), b = 13.311(3), c = 17.741(4) , β = 100.92(3)°, Z = 4, V = 3498.6(12) 3, Mr = 968.19, Dc = 1.838 g/cm3, μ = 1.266 mm-1, F(000) = 1992, R = 0.0337 and wR = 0.0819. Single-crystal X-ray analysis reveals that the titanium atom is N,O,O',O''-chelated by the nitrilotriacetate and O,O'-chelated by the peroxo group, and is coordinated to the bridging O atom in an overall pentagonal-bipyramidal geometry. The manganese ions in the compound are both 6-coordinated by five water molecules and one bridged carboxylato oxygen atom. A decameric water cluster consisting of a cyclic water hexamer in a boat fashion is also found in complex 1. The TGA and XRD results prove that 1 undergoes facile thermal decomposition to form the mixture of Mn2O3 and TiO2 at 600~800 ℃, and pure MnTiO3 at 900 ℃.展开更多
A path-based timing optimization algorithm for buffer insertion and simultaneous sizing is proposed. Firstly, candidate buffer insertion location and buffer size for each branch in a given routing path were obtained v...A path-based timing optimization algorithm for buffer insertion and simultaneous sizing is proposed. Firstly, candidate buffer insertion location and buffer size for each branch in a given routing path were obtained via localized timing optimization. Then, through evaluating each potential insertion against design objectives, potential optimal buffer insertion locations and sizes for the whole routing tree were determined. At last, by removing redundant buffer insertion operations which do not maximize S ( so ), given timing requirements are finally fulfilled through minimum number of buffers.展开更多
The corona-generated audible noise(AN)factor is an important consideration in the design and operation of ultrahigh voltage direct current(DC)and alternate current(AC)transmission lines.Due to the differences in disch...The corona-generated audible noise(AN)factor is an important consideration in the design and operation of ultrahigh voltage direct current(DC)and alternate current(AC)transmission lines.Due to the differences in discharge process and corona-generated space charges between the DC and AC corona discharge,the audible noise from DC and AC corona has different characteristics.This paper conducts a series of experiments by measuring the time-domain waveforms of the audible noise from a single corona source under DC and AC voltage.Sound pressure pulses are extracted from a correlation analysis,and then a detailed comparison of the basic characteristics of DC and AC corona-generated AN in time-domain and frequency spectrum is given.Results from this paper stand to contribute to an explanation of existing results in AN measurement and analysis from DC and AC transmission lines.展开更多
Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound so...Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.展开更多
In this paper,a new generalized step-up multilevel DC-AC converter is proposed,which is suitable for applications with low-voltage input sources,such as photovoltaic power generation and electric vehicles.This inverte...In this paper,a new generalized step-up multilevel DC-AC converter is proposed,which is suitable for applications with low-voltage input sources,such as photovoltaic power generation and electric vehicles.This inverter can achieve a high voltage gain by controlling the series-parallel conversion of the DC power supply and capacitors.Only one DC voltage source and a few power devices are employed.The maximum output voltage and the number of output levels can be further increased through the switched-capacitor unit’s extension and the submodule cascaded extension.Moreover,the capacitor voltages are self-balanced without complicated voltage control circuits.The complementary operating mechanism between each pair of switches simplifies the modulation algorithm.The inductiveload ability is fully taken into account in the proposed inverter.Additionally,a remarkable characteristic of the inverter is that the charging and discharging states among different capacitors are synchronous,which reduces the voltage ripple of the frontend capacitors.The circuit structure,the working principle,the modulation strategy,the capacitors and losses analysis are presented in detail.Afterwards,the advantages of the proposed inverter are analyzed by comparing with other recently proposed inverters.Finally,the steady-state and dynamic performance of the proposed inverter is verified and validated by simulation and experiment.展开更多
An approach for long-range passive impulsive source ranging with a single receiver in shallow water is proposed, which utilizes the frequency spectrum of the warped signal autocor- relation function via warping transf...An approach for long-range passive impulsive source ranging with a single receiver in shallow water is proposed, which utilizes the frequency spectrum of the warped signal autocor- relation function via warping transform. For an ideal waveguide, there are invariable frequency features both in the frequency spectrum of the warped signal corresponding to modal cut-off frequencies and the warped signal autocorrelation function due to modal interference. These intrinsic frequency features can be used to passive source ranging. So, the approximate rela- tionship between the frequency of warped signal at an unknown source range and the intrinsic frequency extracted by the time warping transform is derived. These rules can be generalized to an actual shallow water waveguide. Employing an acoustic model to offer the invariable frequency spectrum features, the impulsive signal data collected by a single hydrophone in the North Yellow Sea in December 2011 are analyzed to verify the proposed source ranging ap- proach. The estimated ranges are in good agreement with the ranges measured by GPS, and the mean relative error of range estimation is less than 10%.展开更多
We experimentally demonstrate a heralded single photon source at 1290 nm by exploiting the spontaneous four wave mixing in a taper-drawn micro/nano-fiber(MNF). Because the frequency detuning between the pump and her...We experimentally demonstrate a heralded single photon source at 1290 nm by exploiting the spontaneous four wave mixing in a taper-drawn micro/nano-fiber(MNF). Because the frequency detuning between the pump and heralded single photons is ~58 THz, the contamination by Raman scattering is significantly reduced at room temperature. Since the MNF is naturally connected to standard single mode fibers via fiber tapers, the source would be compatible with the existing fiber networks. When the emission rate of heralded signal photons is about 4.6 kHz, the measured second-order intensity correlation function g(2)(0) is 0.017 ± 0.002, which is suppressed by a factor of more than 55, relative to the classical limit.展开更多
Radiation of an electric dipole(quantum emitter)in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances.Here we review our recent work on guide...Radiation of an electric dipole(quantum emitter)in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances.Here we review our recent work on guided and radiation modes of electric dipole and optical fiber system and its applications from single photon source to metadevices.We demonstrate that the relative position and orientation of the dipole and the core diameter of the optical fiber are the two key defining factors of the coupled system application.We demonstrate that such a coupled system has a vast span of applications in nanophotonics;a single photon source,a high-quality factor sensor and the building block of metadevices.展开更多
Aiming to the estimation of source numbers, mixing matrix and separation of mixing signals under underdetermined case, the article puts forward a method of underdetermined blind source separation (UBSS) with an appl...Aiming to the estimation of source numbers, mixing matrix and separation of mixing signals under underdetermined case, the article puts forward a method of underdetermined blind source separation (UBSS) with an application in ultra-wideband (UWB) communication signals. The method is based on the sparse characteristic of UWB communication signals in the time domain. Firstly, finding the single source area by calculating the ratio of observed sampling points. Then an algorithm called hough-windowed method was introduced to estimate the number of sources and mixing matrix. Finally the separation of mixing signals using a method based on amended subspace projection. The simulation results indicate that the proposed method can separate UWB communication signals successfully, estimate the mixing matrix with higher accuracy and separate the mixing signals with higher gain compared with other conventional algorithms. At the same time, the method reflects the higher stability and the better noise immunity.展开更多
In recent years,the penetration of renewable resources into AC power systems has increased tremendously,creating a significantly impact on the latter’s operations and stability.In this respect,it is also important to...In recent years,the penetration of renewable resources into AC power systems has increased tremendously,creating a significantly impact on the latter’s operations and stability.In this respect,it is also important to gain a basic analytical understanding of such impact on the steady-state stability of power systems with electrically weak AC/DC interconnections,but such works are not very evident in the literature.Therefore,a classical analytic model of the single and multi-infeed HVDC system which now incorporates renewable resources is proposed.Then the well-established concept of voltage sensitivity of the AC/DC interconnection is applied to analyze the impact of the renewable resources on the steady-state stability of these composite system models,as well as on the influence of system conditions and parameters.This impact is also compared with that arising from other types of shunt devices alternatively connected at the same AC/DC interconnection,therefore their relative beneficial or negative impacts will also be benchmarked.展开更多
文摘Single source molecular precursors (SSPs) provide an opportunity to get control over the microstructure of nanomaterials at atomic level. A SSP was designed and developed for the synthesis of ZnO/TiO2 nanocomposite by sol gel method. In a typical synthe-sis process, a bimetallic molecular compound with chemical formula [Cl2TiZn(dmae)4] (dmae=dimethylaminoethanol) was synthesized and its chemical composition was deter-mined by elemental analysis. The obtained compound has shown excellent solubility in common organic solvents, a prerequisite for its use in sol gel method as SSP. The SSP ob-tained was controllably hydrolyzed by adding equimolar amount of water using ethanol as solvent to get ZnO/TiO2 nanocomposite gel. The resulting gel was precipitated at pH=9 and sintered at 200 ℃ (T200), 400℃ (T400), and 600℃ (T600). The XRD analyses have shown that the as synthesized (non-sintered, T00) powder was amorphous. However, the crystallinity improved upon sintering, and the XRD analyses revealed that the resulting nanomaterials were composed of mixed oxides i.e., ZnO and TiO2. The ZnO was in wurtzite (hexagonal) while the TiO2 was in brookite (orthorhombic) phase. The increase in particlesize was further confirmed from BET analysis and SEM micrographs. The IR spectra ob-tained for the resulting powder have shown the peculiar vibrational bands for Zn-O and Ti-O. Furthermore, the IR spectra revealed that the non-sintered ZnO/TiO2 nanocomposite had significant number of OH group which was removed upon sintering. The photocatalytic activities of the ZnO/TiO2 nanocomposites were tested. All the samples have shown good photocatalytic activities. However, the T400 has shown higher activity than the T00, T200, and T600. The higher photocatalytic activity of T400 than T00, T200, and T600 may be due to improved crystallinity which ensures efficient grain boundary interfaces.
文摘Stable binary single source precursors (SSP) for the deposition of thin films of ceramic semiconductors of composition SnO·GeO were synthesized by close circuit chemical vapour deposition (CCCVD) method. Elemental analysis and spectroscopic techniques were used to characterize the precursors. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to characterize the thin films. Resistivity measurements were conducted to show that the films are of semiconducting nature.
基金Project supported by the National Natural Science Foundation of China(Grant No.92165202)the Innovation Program for Quantum Science and Technology,China(Grant No.2021ZD0300701)the Strategic Priority Research Program(A)of Chinese Academy of Sciences(Grant No.XDA18040300).
文摘The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied.The second-order correlation function at zero delay time is much smaller than 0.1,which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source.The effects of the irradiation duration on the fluorescence from single quantum dots are analyzed.The experimental results can be explained by a recombination model including a multi-nonradiative recombination center model and a multi-charged model.
基金Project supported by the National Natural Science Foundation of China (Grant No 60578055)the State Key Development Program for Basic Research of China (Grant No 2007CB307001)
文摘Recently the performance of the quantum key distribution (QKD) is substantially improved by the decoy state method and the non-orthogonal encoding protocol, separately. In this paper, a practical non-orthogonal decoy state protocol with a heralded single photon source (HSPS) for QKD is presented. The protocol is based on 4 states with different intensities. i.e. one signal state and three decoy states. The signal state is for generating keys; the decoy states are for detecting the eavesdropping and estimating the fraction of single-photon and two-photon pulses. We have discussed three cases of this protocol, i.e. the general case, the optimal case and the special case. Moreover, the final key rate over transmission distance is simulated. For the low dark count of the HSPS and the utilization of the two-photon pulses, our protocol has a higher key rate and a longer transmission distance than any other decoy state protocol.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61372076 and 61301171the 111 Project under Grant No B08038
文摘Measurement-device-independent quantum key distribution (MDI-QKD) can be immune to all detector side- channel attacks and guarantee the information-theoretical security even with uncharacterized single photon detectors. MDI-QKD has been demonstrated in both laboratories and field-tests by using attenuated lasers combined with the decoy-state technique. However, it is a critical assumption that the sources used by legitimate participants are trusted in MDI-QKD. Hence, it is possible that a potential security risk exists. Here we propose a new scheme of polarization-encoding-based MDI-QKD with a single untrusted source, by which the complexity of the synchronization system can be reduced and the success rate of the Bell-state measurement can be improved. Meanwhile, the decoy-state method is employed to avoid the security issues introduced by a non-ideal single photon source. We also derive a security analysis of the proposed system. In addition, it seems to be a promising candidate for the implementation for QKD network in the near future.
基金This work was supported by the National Natural Science Foundation of China(62001489)the scientific research planning project of National University of Defense Technology(JS19-04).
文摘Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is that each sub-dictionary possesses discriminative information about its corresponding source,and this information can be used to recover almost every sample from that source.However,in a more general sense,the samples from a source are composed not only of discriminative information but also common information shared with other sources.This paper proposes learning a discriminative high-fidelity dictionary to improve the separation performance.The innovations are threefold.Firstly,an extra sub-dictionary was combined into a conventional union dictionary to ensure that the source-specific sub-dictionaries can capture only the purely discriminative information for their corresponding sources because the common information is collected in the additional sub-dictionary.Secondly,a task-driven learning algorithm is designed to optimize the new union dictionary and a set of weights that indicate how much of the common information should be allocated to each source.Thirdly,a source separation scheme based on the learned dictionary is presented.Experimental results on a human speech dataset yield evidence that our algorithm can achieve better separation performance than either state-of-the-art or traditional algorithms.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11464034
文摘We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.
文摘3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)
基金Project supported by the National Natural Science Foundation of China(Grant No.61601196).
文摘In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade.By including three transition pathways,we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally.Based on the master equation,we simulate the system evolution and find that the analytical solutions match well with the numerical results.Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 91850112, 61774081, 62004099, and 61921005)in part by Shenzhen Fundamental Research Program (Grant Nos. JCYJ20180307163240991 and JCYJ20180307154632609)+3 种基金in part by the State Key Research and Development Project of Jiangsu Province, China (Grant No. BE2018115)in part by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20201253)in part by the State Key Research and Development Project of Guangdong Province, China (Grant No. 2020B010174002)in part by Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43020500)。
文摘The authors demonstrate a Bull's eye cavity design that is composed of circular Bragg gratings and micropillar optical cavity in 4H silicon carbide(4H-SiC) for single photon emission. Numerical calculations are used to investigate and optimize the emission rate and directionality of emission. Thanks to the optical mode resonances and Bragg reflections,the radiative decay rates of a dipole embedded in the cavity center is enhanced by 12.8 times as compared to that from a bulk 4H-SiC. In particular, a convergent angular distribution of the emission in far field is simultaneously achieved, which remarkably boost the collection efficiency. The findings of this work provide an alternative architecture to manipulate light-matter interactions for achieving high-efficient SiC single photon sources towards applications in quantum information technologies.
基金supported by the Fundamental Research Funds for the Central Universities, SCUT (No. 2009ZM0313) the National Natural Science Foundation of China (B5080320)
文摘A new heterobimetallic nitrilotriacetatoperoxotitanate complex with the formula of [Mn(H2O)5]2[Ti(O2)2O(nta)2]·7H2O (1, C6H6O6N = H3nta) has been isolated in pure crystals. It was characterized by elemental analyses, IR, thermal analysis (TGA) and single-crystal X-ray diffraction. Complex 1 crystallizes in monoclinic, space group C2/c with a = 15.088(3), b = 13.311(3), c = 17.741(4) , β = 100.92(3)°, Z = 4, V = 3498.6(12) 3, Mr = 968.19, Dc = 1.838 g/cm3, μ = 1.266 mm-1, F(000) = 1992, R = 0.0337 and wR = 0.0819. Single-crystal X-ray analysis reveals that the titanium atom is N,O,O',O''-chelated by the nitrilotriacetate and O,O'-chelated by the peroxo group, and is coordinated to the bridging O atom in an overall pentagonal-bipyramidal geometry. The manganese ions in the compound are both 6-coordinated by five water molecules and one bridged carboxylato oxygen atom. A decameric water cluster consisting of a cyclic water hexamer in a boat fashion is also found in complex 1. The TGA and XRD results prove that 1 undergoes facile thermal decomposition to form the mixture of Mn2O3 and TiO2 at 600~800 ℃, and pure MnTiO3 at 900 ℃.
文摘A path-based timing optimization algorithm for buffer insertion and simultaneous sizing is proposed. Firstly, candidate buffer insertion location and buffer size for each branch in a given routing path were obtained via localized timing optimization. Then, through evaluating each potential insertion against design objectives, potential optimal buffer insertion locations and sizes for the whole routing tree were determined. At last, by removing redundant buffer insertion operations which do not maximize S ( so ), given timing requirements are finally fulfilled through minimum number of buffers.
基金supported by National Basic Research Program of China(973 Program)under Grant 2011CB209402.
文摘The corona-generated audible noise(AN)factor is an important consideration in the design and operation of ultrahigh voltage direct current(DC)and alternate current(AC)transmission lines.Due to the differences in discharge process and corona-generated space charges between the DC and AC corona discharge,the audible noise from DC and AC corona has different characteristics.This paper conducts a series of experiments by measuring the time-domain waveforms of the audible noise from a single corona source under DC and AC voltage.Sound pressure pulses are extracted from a correlation analysis,and then a detailed comparison of the basic characteristics of DC and AC corona-generated AN in time-domain and frequency spectrum is given.Results from this paper stand to contribute to an explanation of existing results in AN measurement and analysis from DC and AC transmission lines.
文摘Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51507155in part by the Youth key Teacher Project of Henan Higher Educational Institutions under Grant 2019GGJS011.
文摘In this paper,a new generalized step-up multilevel DC-AC converter is proposed,which is suitable for applications with low-voltage input sources,such as photovoltaic power generation and electric vehicles.This inverter can achieve a high voltage gain by controlling the series-parallel conversion of the DC power supply and capacitors.Only one DC voltage source and a few power devices are employed.The maximum output voltage and the number of output levels can be further increased through the switched-capacitor unit’s extension and the submodule cascaded extension.Moreover,the capacitor voltages are self-balanced without complicated voltage control circuits.The complementary operating mechanism between each pair of switches simplifies the modulation algorithm.The inductiveload ability is fully taken into account in the proposed inverter.Additionally,a remarkable characteristic of the inverter is that the charging and discharging states among different capacitors are synchronous,which reduces the voltage ripple of the frontend capacitors.The circuit structure,the working principle,the modulation strategy,the capacitors and losses analysis are presented in detail.Afterwards,the advantages of the proposed inverter are analyzed by comparing with other recently proposed inverters.Finally,the steady-state and dynamic performance of the proposed inverter is verified and validated by simulation and experiment.
基金supported by the Program of One Hundred Talented People of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(11174312,10974218,11125420)
文摘An approach for long-range passive impulsive source ranging with a single receiver in shallow water is proposed, which utilizes the frequency spectrum of the warped signal autocor- relation function via warping transform. For an ideal waveguide, there are invariable frequency features both in the frequency spectrum of the warped signal corresponding to modal cut-off frequencies and the warped signal autocorrelation function due to modal interference. These intrinsic frequency features can be used to passive source ranging. So, the approximate rela- tionship between the frequency of warped signal at an unknown source range and the intrinsic frequency extracted by the time warping transform is derived. These rules can be generalized to an actual shallow water waveguide. Employing an acoustic model to offer the invariable frequency spectrum features, the impulsive signal data collected by a single hydrophone in the North Yellow Sea in December 2011 are analyzed to verify the proposed source ranging ap- proach. The estimated ranges are in good agreement with the ranges measured by GPS, and the mean relative error of range estimation is less than 10%.
文摘We experimentally demonstrate a heralded single photon source at 1290 nm by exploiting the spontaneous four wave mixing in a taper-drawn micro/nano-fiber(MNF). Because the frequency detuning between the pump and heralded single photons is ~58 THz, the contamination by Raman scattering is significantly reduced at room temperature. Since the MNF is naturally connected to standard single mode fibers via fiber tapers, the source would be compatible with the existing fiber networks. When the emission rate of heralded signal photons is about 4.6 kHz, the measured second-order intensity correlation function g(2)(0) is 0.017 ± 0.002, which is suppressed by a factor of more than 55, relative to the classical limit.
文摘Radiation of an electric dipole(quantum emitter)in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances.Here we review our recent work on guided and radiation modes of electric dipole and optical fiber system and its applications from single photon source to metadevices.We demonstrate that the relative position and orientation of the dipole and the core diameter of the optical fiber are the two key defining factors of the coupled system application.We demonstrate that such a coupled system has a vast span of applications in nanophotonics;a single photon source,a high-quality factor sensor and the building block of metadevices.
基金supported by the National Natural Science Foundation of China (61172038, 60831001)
文摘Aiming to the estimation of source numbers, mixing matrix and separation of mixing signals under underdetermined case, the article puts forward a method of underdetermined blind source separation (UBSS) with an application in ultra-wideband (UWB) communication signals. The method is based on the sparse characteristic of UWB communication signals in the time domain. Firstly, finding the single source area by calculating the ratio of observed sampling points. Then an algorithm called hough-windowed method was introduced to estimate the number of sources and mixing matrix. Finally the separation of mixing signals using a method based on amended subspace projection. The simulation results indicate that the proposed method can separate UWB communication signals successfully, estimate the mixing matrix with higher accuracy and separate the mixing signals with higher gain compared with other conventional algorithms. At the same time, the method reflects the higher stability and the better noise immunity.
文摘In recent years,the penetration of renewable resources into AC power systems has increased tremendously,creating a significantly impact on the latter’s operations and stability.In this respect,it is also important to gain a basic analytical understanding of such impact on the steady-state stability of power systems with electrically weak AC/DC interconnections,but such works are not very evident in the literature.Therefore,a classical analytic model of the single and multi-infeed HVDC system which now incorporates renewable resources is proposed.Then the well-established concept of voltage sensitivity of the AC/DC interconnection is applied to analyze the impact of the renewable resources on the steady-state stability of these composite system models,as well as on the influence of system conditions and parameters.This impact is also compared with that arising from other types of shunt devices alternatively connected at the same AC/DC interconnection,therefore their relative beneficial or negative impacts will also be benchmarked.