In recent years,the penetration of renewable resources into AC power systems has increased tremendously,creating a significantly impact on the latter’s operations and stability.In this respect,it is also important to...In recent years,the penetration of renewable resources into AC power systems has increased tremendously,creating a significantly impact on the latter’s operations and stability.In this respect,it is also important to gain a basic analytical understanding of such impact on the steady-state stability of power systems with electrically weak AC/DC interconnections,but such works are not very evident in the literature.Therefore,a classical analytic model of the single and multi-infeed HVDC system which now incorporates renewable resources is proposed.Then the well-established concept of voltage sensitivity of the AC/DC interconnection is applied to analyze the impact of the renewable resources on the steady-state stability of these composite system models,as well as on the influence of system conditions and parameters.This impact is also compared with that arising from other types of shunt devices alternatively connected at the same AC/DC interconnection,therefore their relative beneficial or negative impacts will also be benchmarked.展开更多
文摘In recent years,the penetration of renewable resources into AC power systems has increased tremendously,creating a significantly impact on the latter’s operations and stability.In this respect,it is also important to gain a basic analytical understanding of such impact on the steady-state stability of power systems with electrically weak AC/DC interconnections,but such works are not very evident in the literature.Therefore,a classical analytic model of the single and multi-infeed HVDC system which now incorporates renewable resources is proposed.Then the well-established concept of voltage sensitivity of the AC/DC interconnection is applied to analyze the impact of the renewable resources on the steady-state stability of these composite system models,as well as on the influence of system conditions and parameters.This impact is also compared with that arising from other types of shunt devices alternatively connected at the same AC/DC interconnection,therefore their relative beneficial or negative impacts will also be benchmarked.