Grain weight, one of the major factors determining rice yield, is a typical quantitative trait control ed by multiple genes. With Guangluai 4 as recipient and Nipponbare as donor, a population of 119 chromosome single...Grain weight, one of the major factors determining rice yield, is a typical quantitative trait control ed by multiple genes. With Guangluai 4 as recipient and Nipponbare as donor, a population of 119 chromosome single segment substitution lines had been developed. Correlation analysis between grain weight and grain shape by SPSS revealed that 1 000-grain weight shared extremely significant posi-tive correlation with grain length and length-width ratio, but no significant correlation with grain width and thickness. The QTL analysis of grain weight was carried out using one-way analysis of variance and Dunnett's test. Nineteen stable QTLs re-sponsible for grain weight were identified over two years. Al 19 QTLs were identi-fied on al chromosomes except for chromosome 10 and 12 at a significance level of P≤0.001. Among them, 10 QTLs had a positive effect and were derived from the Nipponbare al ele, the additive effect of these QTLs ranged from 0.49 to 2.74 g, and the contributions of the additive effects ranged from 2.00% to 11.05%. Another 9 QTLs had a negative effect and were al derived from Guangluai 4 al ele, the ad-ditive effect of these QTLs ranged from 0.60 to 2.35 g, and the contributions of the additive effects ranged from 2.40% to 9.84%. The results provide a basis for the fine mapping and gene cloning of novel locus associated with rice grain weight.展开更多
Tiller is one of the most important agronomic traits which influences quantity and quality of effective panicles and finally influences yield in rice. It is important to understand "static" and "dynamic" informati...Tiller is one of the most important agronomic traits which influences quantity and quality of effective panicles and finally influences yield in rice. It is important to understand "static" and "dynamic" information of the QTLs for tillers in rice. This work was the first time to simultaneously map unconditional and conditional QTLs for tiller numbers at various stages by using single segment substitution lines in rice. Fourteen QTLs for tiller number, distributing on the corresponding substitution segments of chromosomes 1, 2, 3, 4, 6, 7 and 8 were detected. Both the number and the effect of the QTLs for tiller number were various at different stages, from 6 to 9 in the number and from 1.49 to 3.49 in the effect, respectively. Tiller number QTLs expressed in a time order, mainly detected at three stages of 0-7 d, 14-21 d and 35-42 d after transplanting with 6 positive, 9 random and 6 negative expressing QTLs, respectively. Each of the QTLs expressed one time at least during the whole duration of rice. The tiller number at a specific stage was determined by sum of QTL effects estimated by the unconditional method, while the increasing or decreasing number in a given time interval was controlled by the total of QTL effects estimated by the conditional method. These results demonstrated that it is highly effective and accurate for mapping of the QTLs by using single segment substitution lines and the conditional analysis methodology.展开更多
QTLs for plant height and its components on the substituted segments of fifty-two single segment substitution lines (SSSLs) in rice were identified through t-test (P〈0.001) for comparison between each SSSL and re...QTLs for plant height and its components on the substituted segments of fifty-two single segment substitution lines (SSSLs) in rice were identified through t-test (P〈0.001) for comparison between each SSSL and recipient parent Huajingxian 74. On the 14 substituted segments, 24 QTLs were detected, 10 for plant height, 2 for panicle length, 4 for length of the first internode from the top, 5 for length of the second internode from the top and 3 for length of the third internode from the top, respectively. All these QTLs were distributed on nine rice chromosomes except chromosomes 5, 9 and 11. The additive effect ranged from -4.08 to 3.98 cm, and the additive effect percentages varied from -19.35% to 10.43%.展开更多
The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T poly...The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T polymorphism. Among these alleles, (CT)12-G, (CT)15-G, (CT)16-G, (CT)17-G, (CT)18-G and (CT)21-G have not been reported. Seventy-two single-segment substitution lines (SSSLs) carrying different alleles at the Wx locus were developed by using Huajingxian 74 with the (CT)11-G allele as a recipient and 20 accessions containing 12 different alleles at the Wx locus as donors. The estimated length of the substituted segments ranged from 2.2 to 77.3 cM with an average of 17.4 cM.展开更多
Rice grain shape is one of the important factors affecting grain quality and yield,but it is liable to be influenced by genetic backgrounds and environments.The chromosome single segment substitution lines(SSSLs) in r...Rice grain shape is one of the important factors affecting grain quality and yield,but it is liable to be influenced by genetic backgrounds and environments.The chromosome single segment substitution lines(SSSLs) in rice have been considered as ideal populations to identify the quantitative trait loci(QTLs).In this study,22 QTLs affecting rice grain shape were detected to be distributed on eight chromosomes except chromosomes 6,9,11 and 12 by using SSSLs.Among them,seven QTLs conditioned grain length,six conditioned grain width,five affected grain length-width ratio and four controlled grain thickness.展开更多
Heading date of rice is a key agronomic trait determining cultivated areas and seasons and affecting yield. In the present study, ifve primary single segment substitution lines with the same genetic background were us...Heading date of rice is a key agronomic trait determining cultivated areas and seasons and affecting yield. In the present study, ifve primary single segment substitution lines with the same genetic background were used to detect quantitative trait loci (QTLs) for heading date in rice. Two QTLs, qHD3 and qHD6 on the short arm of chromosome 3 and the short arm of chromosome 6, respectively, were identiifed under natural long-day (NLD). Nineteen secondary single segment substitution lines (SSSLs) and seven double segments pyramiding lines were designed to map the two QTLs and to evaluate their epistatic interaction between them. By overlapping mapping, qHD3 was mapped in a 791-kb interval between SSR markers RM3894 and RM569 and qHD6 in a 1 125-kb interval between RM587 and RM225. Results revealed the existence of epistatic interaction between qHD3 and qHD6 under natural long-day (NLD). It was also found that qHD3 and qHD6 had signiifcant effects on plant height and yield traits, indicating that both of the QTLs have pleiotropic effects.展开更多
Single segment substitution lines (SSSLs) each with a single chromosome segment from a donor under the same genetic background as the recipient were developed in rice by advanced backcrossing and molecular marker-as...Single segment substitution lines (SSSLs) each with a single chromosome segment from a donor under the same genetic background as the recipient were developed in rice by advanced backcrossing and molecular marker-assisted selection. Using the SSSLs, the QTLs for the important agronomic traits in rice would be detected under different environmental conditions. Detection of the QTLs controlling 22 important traits in rice was done with 32 SSSLs by the randomized block design in 2-4 cropping seasons. 59 QTLs were detected and distributed on chromosomes 1, 2, 3, 4, 6, 7, 8, 10, and 11, of which 18 QTLs were detected more than twice. Only 30.5% of the QTLs were detected repeatedly in different cropping seasons. Most of the QTLs of important agronomic traits were of little additive effects and instability. The QTLs controlling the traits, such as grain weight, grain length, ratio of grain length to width, and heading date were relatively stable. The stable QTLs usually had larger additive effects and were less affected by environment. The QTLs for the important agronomic traits were detected using the SSSLs in rice with high resolution under different environmental conditions. The instability of the QTLs may be the basis of the variation of rice plants during growth and development. It would be the genetic basis for improving yield and quality in rice cultivars by farming methods.展开更多
Awide spectrum of Androgen insensitivity syndrome (AIS) occur due to mutations in the androgen receptor(AR). The clinical presentation of AIS ranges from a typically male phenotype with decreased body hair and/ or...Awide spectrum of Androgen insensitivity syndrome (AIS) occur due to mutations in the androgen receptor(AR). The clinical presentation of AIS ranges from a typically male phenotype with decreased body hair and/ or oligospermia to a typically female phenotype with primary amenorrhea and without pubic and axillary hair;展开更多
基金Supported by National Natural Science Foundation of China(31101131)National Key Technology Research and Development Program(2011BAD16B03)+1 种基金Agricultural Science Independent Innovation Foundation of Jiangsu Province[CX(12)1003]Key Technology Research and Development Program of Jiangsu Province(BE2012309)~~
文摘Grain weight, one of the major factors determining rice yield, is a typical quantitative trait control ed by multiple genes. With Guangluai 4 as recipient and Nipponbare as donor, a population of 119 chromosome single segment substitution lines had been developed. Correlation analysis between grain weight and grain shape by SPSS revealed that 1 000-grain weight shared extremely significant posi-tive correlation with grain length and length-width ratio, but no significant correlation with grain width and thickness. The QTL analysis of grain weight was carried out using one-way analysis of variance and Dunnett's test. Nineteen stable QTLs re-sponsible for grain weight were identified over two years. Al 19 QTLs were identi-fied on al chromosomes except for chromosome 10 and 12 at a significance level of P≤0.001. Among them, 10 QTLs had a positive effect and were derived from the Nipponbare al ele, the additive effect of these QTLs ranged from 0.49 to 2.74 g, and the contributions of the additive effects ranged from 2.00% to 11.05%. Another 9 QTLs had a negative effect and were al derived from Guangluai 4 al ele, the ad-ditive effect of these QTLs ranged from 0.60 to 2.35 g, and the contributions of the additive effects ranged from 2.40% to 9.84%. The results provide a basis for the fine mapping and gene cloning of novel locus associated with rice grain weight.
基金supported by the grants from the National.Basic Research Program of China(2006CB 101700)the National Natural Science Foundation of China(30330370).
文摘Tiller is one of the most important agronomic traits which influences quantity and quality of effective panicles and finally influences yield in rice. It is important to understand "static" and "dynamic" information of the QTLs for tillers in rice. This work was the first time to simultaneously map unconditional and conditional QTLs for tiller numbers at various stages by using single segment substitution lines in rice. Fourteen QTLs for tiller number, distributing on the corresponding substitution segments of chromosomes 1, 2, 3, 4, 6, 7 and 8 were detected. Both the number and the effect of the QTLs for tiller number were various at different stages, from 6 to 9 in the number and from 1.49 to 3.49 in the effect, respectively. Tiller number QTLs expressed in a time order, mainly detected at three stages of 0-7 d, 14-21 d and 35-42 d after transplanting with 6 positive, 9 random and 6 negative expressing QTLs, respectively. Each of the QTLs expressed one time at least during the whole duration of rice. The tiller number at a specific stage was determined by sum of QTL effects estimated by the unconditional method, while the increasing or decreasing number in a given time interval was controlled by the total of QTL effects estimated by the conditional method. These results demonstrated that it is highly effective and accurate for mapping of the QTLs by using single segment substitution lines and the conditional analysis methodology.
基金the key project ofNational Natural Science Foundation of China(30330370) the team project of Natural ScienceFoundation of Guangdong Province (20003023).
文摘QTLs for plant height and its components on the substituted segments of fifty-two single segment substitution lines (SSSLs) in rice were identified through t-test (P〈0.001) for comparison between each SSSL and recipient parent Huajingxian 74. On the 14 substituted segments, 24 QTLs were detected, 10 for plant height, 2 for panicle length, 4 for length of the first internode from the top, 5 for length of the second internode from the top and 3 for length of the third internode from the top, respectively. All these QTLs were distributed on nine rice chromosomes except chromosomes 5, 9 and 11. The additive effect ranged from -4.08 to 3.98 cm, and the additive effect percentages varied from -19.35% to 10.43%.
基金supported by the key project of National Natural Science Foundation of China(30330370).
文摘The microsatellite markers 484/485 and 484/W2R were used to identify the multiple alleles at the Wx locus in rice germplasm. Fifteen alleles were identified in 278 accessions by using microsatellite class and G-T polymorphism. Among these alleles, (CT)12-G, (CT)15-G, (CT)16-G, (CT)17-G, (CT)18-G and (CT)21-G have not been reported. Seventy-two single-segment substitution lines (SSSLs) carrying different alleles at the Wx locus were developed by using Huajingxian 74 with the (CT)11-G allele as a recipient and 20 accessions containing 12 different alleles at the Wx locus as donors. The estimated length of the substituted segments ranged from 2.2 to 77.3 cM with an average of 17.4 cM.
基金supported by the National Basic Research Program of China(Grant No.2005CB120807)
文摘Rice grain shape is one of the important factors affecting grain quality and yield,but it is liable to be influenced by genetic backgrounds and environments.The chromosome single segment substitution lines(SSSLs) in rice have been considered as ideal populations to identify the quantitative trait loci(QTLs).In this study,22 QTLs affecting rice grain shape were detected to be distributed on eight chromosomes except chromosomes 6,9,11 and 12 by using SSSLs.Among them,seven QTLs conditioned grain length,six conditioned grain width,five affected grain length-width ratio and four controlled grain thickness.
基金financially supported by the National Natural Science Foundation of China (31171529)the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD01B02-13)the Special Fund for Agro-Scientific Research in the Public Interest of China (201303007)
文摘Heading date of rice is a key agronomic trait determining cultivated areas and seasons and affecting yield. In the present study, ifve primary single segment substitution lines with the same genetic background were used to detect quantitative trait loci (QTLs) for heading date in rice. Two QTLs, qHD3 and qHD6 on the short arm of chromosome 3 and the short arm of chromosome 6, respectively, were identiifed under natural long-day (NLD). Nineteen secondary single segment substitution lines (SSSLs) and seven double segments pyramiding lines were designed to map the two QTLs and to evaluate their epistatic interaction between them. By overlapping mapping, qHD3 was mapped in a 791-kb interval between SSR markers RM3894 and RM569 and qHD6 in a 1 125-kb interval between RM587 and RM225. Results revealed the existence of epistatic interaction between qHD3 and qHD6 under natural long-day (NLD). It was also found that qHD3 and qHD6 had signiifcant effects on plant height and yield traits, indicating that both of the QTLs have pleiotropic effects.
基金the National Natural Science Foundation of China (30330370).
文摘Single segment substitution lines (SSSLs) each with a single chromosome segment from a donor under the same genetic background as the recipient were developed in rice by advanced backcrossing and molecular marker-assisted selection. Using the SSSLs, the QTLs for the important agronomic traits in rice would be detected under different environmental conditions. Detection of the QTLs controlling 22 important traits in rice was done with 32 SSSLs by the randomized block design in 2-4 cropping seasons. 59 QTLs were detected and distributed on chromosomes 1, 2, 3, 4, 6, 7, 8, 10, and 11, of which 18 QTLs were detected more than twice. Only 30.5% of the QTLs were detected repeatedly in different cropping seasons. Most of the QTLs of important agronomic traits were of little additive effects and instability. The QTLs controlling the traits, such as grain weight, grain length, ratio of grain length to width, and heading date were relatively stable. The stable QTLs usually had larger additive effects and were less affected by environment. The QTLs for the important agronomic traits were detected using the SSSLs in rice with high resolution under different environmental conditions. The instability of the QTLs may be the basis of the variation of rice plants during growth and development. It would be the genetic basis for improving yield and quality in rice cultivars by farming methods.
文摘Awide spectrum of Androgen insensitivity syndrome (AIS) occur due to mutations in the androgen receptor(AR). The clinical presentation of AIS ranges from a typically male phenotype with decreased body hair and/ or oligospermia to a typically female phenotype with primary amenorrhea and without pubic and axillary hair;