Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancemen...Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.展开更多
Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole...Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064 nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9± 0.3 s. Thus we provide a system where the atomic qubit can be coherently manipulated.展开更多
A cold atom source is important for quantum metrology and precision measurement.To reduce the quantum projection noise limit in optical lattice clock,one can increase the number of cold atoms and reduce the dead time ...A cold atom source is important for quantum metrology and precision measurement.To reduce the quantum projection noise limit in optical lattice clock,one can increase the number of cold atoms and reduce the dead time by enhancing the loading rate.In this work,we realize an enhanced cold mercury atom source based on a two-dimensional(2D)magnetooptical trap(MOT).The vacuum system is composed of two titanium chambers connected with a differential pumping tube.Two stable cooling laser systems are adopted for the 2D-MOT and the three-dimensional(3D)-MOT,respectively.Using an optimized 2D-MOT and push beam,about 1.3×10^(6)atoms,which are almost an order of magnitude higher than using a pure 3D-MOT,are loaded into the 3D-MOT for202Hg atoms.This enhanced cold mercury atom source is helpful in increasing the frequency stability of a neutral mercury lattice clock.展开更多
Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or l...Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or loss of single atoms. The typical magnetic gradient is about 29 mT/cm, which evidently reduces the capture rate of magneto-optical trap.展开更多
We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 ×...We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.展开更多
Mercury is a promising candidate for the optical lattice clock, due to its low sensitivity to the blackbody radiation. We develop a single folded beam magneto-optical trap for the neutral mercury optical lattice clock...Mercury is a promising candidate for the optical lattice clock, due to its low sensitivity to the blackbody radiation. We develop a single folded beam magneto-optical trap for the neutral mercury optical lattice clock, with a 253. 7nm frequency quadrupled laser. Up to 1.7 × 10^6 (202Hg) or 1.5 × 10^6 (199Hg) atoms can be captured, and the atom temperature is lowered to 170μK (202Hg) or 50μK (199Hg). The cold atom signals of all six rich abundant isotopes are observed in this system.展开更多
Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control para...Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.展开更多
Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and ex...Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment.展开更多
In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and t...In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and the density of the atoms is increased to 5.6 × 1011 cm-3 when the fractional population of the atoms in the bright hyperfine ground state is as low as 0.15. The vibrational spectra of the ultracold cesium molecules are also studied in a standard MOT and in a dark MOT separately. The experimental results are analyzed by using the perturbative quantum approach.展开更多
This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These a...This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. The remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.展开更多
Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However,due to the complex energy levels and the small effective Lande g-factor of the excited states, the tra...Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However,due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap(MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT,which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup.展开更多
We study a Zeeman slower using the magnetic field generated by a pair of coils for a magneto-optical trap. The efficiency of the Zeeman slower is shown to be dependent on the intensity and frequency detuning of the la...We study a Zeeman slower using the magnetic field generated by a pair of coils for a magneto-optical trap. The efficiency of the Zeeman slower is shown to be dependent on the intensity and frequency detuning of the laser light for slowing the atoms. With the help of numerical analysis, optimal experimental parameters are explored.Experimentally, the optimal frequency detuning and intensity of the slowing beam are explored, and 4 × 10~7 ytterbium atoms are trapped in the magneto-optical trap.展开更多
A 1470 nm+ 852 nm two-color(TC) cesium(Cs) magneto-optical trap(MOT) with a 6S_(1/2)-6P_(3/2)-7S_(1/2) laddertype system is proposed and experimentally investigated. To the best of our knowledge, it is t...A 1470 nm+ 852 nm two-color(TC) cesium(Cs) magneto-optical trap(MOT) with a 6S_(1/2)-6P_(3/2)-7S_(1/2) laddertype system is proposed and experimentally investigated. To the best of our knowledge, it is the first report about the 1470 nm + 852 nm Cs TC-MOT. One of the three pairs of the 852 nm cooling and trapping beams(CTBs) in a conventional Cs MOT is replaced with a pair of the 1470 nm CTBs. Thus, the TC-MOT partially employs the optical radiation forces from photon scattering of the 6P_(3∕2)(F'= 5)-7S_(1∕2)(F''= 4) excited-state transition(1470 nm). This TC-MOT can cool and trap Cs atoms on both the red-and blue-detuning sides of the twophoton resonance. This work may have applications in cooling and trapping of atoms using inconvenient wavelengths and background-free detection of cold and trapped Cs atoms.展开更多
We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radi...We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam, the atoms are pushed out continuously with low velocities and a high flux. The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4× 10^9 s-1 by increasing the intensity of the trapping beams. We also present a simple model for describing the dependence of the beam performance on the magneto optical trap trapping laser intensity and the detuning.展开更多
We report a detailed study of the enhanced optical molasses cooling of Cs atoms,whose large hyperfine structure allows to use the largely red-detuned cooling lasers.We find that the combination of a large frequency de...We report a detailed study of the enhanced optical molasses cooling of Cs atoms,whose large hyperfine structure allows to use the largely red-detuned cooling lasers.We find that the combination of a large frequency detuning of about-110 MHz for the cooling laser and a suitable control for the powers of the cooling and repumping lasers allows to reach a cold temperature of^5.5μK.We obtain 5.1×10^7 atoms with the number density around 1×10^12 cm^-3.Our result gains a lower temperature than that got in other experiments,in which the cold Cs atoms with the temperature of^10μK have been achieved by the optical molasses cooling.展开更多
We created an ultracold plasma by photoionizing the laser-cooled and trapped rubidium atoms in a magneto-optical trap. In the externally applied direct current(DC) electric field environment,the electrons which esca...We created an ultracold plasma by photoionizing the laser-cooled and trapped rubidium atoms in a magneto-optical trap. In the externally applied direct current(DC) electric field environment,the electrons which escape from the potential well of the ultracold plasma were detected for different numbers of the ions and initial kinetic energies of the electrons. The results are in good agreement with the calculations, based on the Coulomb potential well model, indicating that the external DC field is an effective tool to adjust the depth of potential well of the plasma, and it is possible to create an ultracold plasma in a controlled manner.展开更多
Optical dipole trap(ODT)is becoming an important tool of manipulating neu-tral atoms.In this paper ODT is realized with a far-off resonant laser beam strongly fo-cused in the magneto-optical trap(MOT)of cesium atoms.T...Optical dipole trap(ODT)is becoming an important tool of manipulating neu-tral atoms.In this paper ODT is realized with a far-off resonant laser beam strongly fo-cused in the magneto-optical trap(MOT)of cesium atoms.The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the opti-cal dipole trap simultaneously.The advantages of our experimental scheme are discussed,and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.展开更多
A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom ste...A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom steps and photon anti-bunching are observed by a photon-counting-based HBT system using fluorescence light. The average atom dwelling time in the FORT is about 9 s. To reduce the background noise in the detection procedure we employ a weak probe laser tuned to the D1 line to il- lurninate the single atom from the direction perpendicular to the large-numerical-aperture collimation system. The second or- der degree of coherence g(2)(r)=0.12_+0.02 is obtained directly from the fluorescence light of the single atom without deducting the background. The background light has been suppressed to 10 counts per 50 ms, which is much lower compared with the reported results. The measured g(2)(r) is in good agreement with theoretical analysis. The system provides a simple and effi- cient method to manipulate and measure single neutral atoms, and opens a way to create an efficient controlled single-photon source.展开更多
We report the effective slowing and trapping of Cs atoms in an ultrahigh-vacuum apparatus.The heated Cs atoms in an oven are slowed using a Zeeman slower after the oven chamber and then trapped using a magneto-optical...We report the effective slowing and trapping of Cs atoms in an ultrahigh-vacuum apparatus.The heated Cs atoms in an oven are slowed using a Zeeman slower after the oven chamber and then trapped using a magneto-optical trap in a science chamber.Compared to the traditional vacuum pressure of~10^(−7)Pa determined by the vapor pressure of Cs atoms in the oven chamber,the designed cold nipple and differential pumping tube are used between the oven and the oven chamber to achieve a lower vacuum pressure of~3.6×10^(−9)Pa.This is beneficial for achieving and maintaining an ultrahigh vacuum in the science chamber.We demonstrate the performance of our apparatus through the effective slowing of Cs atoms and an optimal magneto-optical trap.展开更多
We developed a new single-layer atom chip with an additional U-shaped current-carrying structure.The new U-shaped microwire creates optimized magnetic field distribution,which increases the trapping volume of a magnet...We developed a new single-layer atom chip with an additional U-shaped current-carrying structure.The new U-shaped microwire creates optimized magnetic field distribution,which increases the trapping volume of a magneto-optical trap(MOT) near the chip.Our approach allows one to localize more atoms,while a setup remains relatively simple (single-layer approach) and consumes low current (up to 10 A). The total number of trapped^(87)Rb atoms in our setup is 5×10^(7).展开更多
基金the National Key Research and Development Program of China(Grant No.2022YFA1404104)the National Natural Science Foundation of China(Grant Nos.12025509 and 12104521)Fundamental Research Project of Shenzhen(Grant No.JCYJ20230808105009018).
文摘Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.
基金supported by the National Natural Science Foundation of China (Grant Nos 60578018 and 10434080)the project for excellent research team from the National Natural Science Foundation of China (Grant No 60821004)+4 种基金the Program for New Century Excellent Talents of the Education Ministry of China (Grant No NCET-07-0524)the State Basic Key Research Program of China (Grant No 2006CB921102)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No 20070108003)the Natural Science Foundation of Shanxi Province,China (Grant No 2007011003)the Scientific Research Funds for Returned Scholars Abroad of Shanxi Province,China
文摘Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064 nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9± 0.3 s. Thus we provide a system where the atomic qubit can be coherently manipulated.
文摘A cold atom source is important for quantum metrology and precision measurement.To reduce the quantum projection noise limit in optical lattice clock,one can increase the number of cold atoms and reduce the dead time by enhancing the loading rate.In this work,we realize an enhanced cold mercury atom source based on a two-dimensional(2D)magnetooptical trap(MOT).The vacuum system is composed of two titanium chambers connected with a differential pumping tube.Two stable cooling laser systems are adopted for the 2D-MOT and the three-dimensional(3D)-MOT,respectively.Using an optimized 2D-MOT and push beam,about 1.3×10^(6)atoms,which are almost an order of magnitude higher than using a pure 3D-MOT,are loaded into the 3D-MOT for202Hg atoms.This enhanced cold mercury atom source is helpful in increasing the frequency stability of a neutral mercury lattice clock.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60578018 and 10434080)the State Key Research Program of China (Grant No 2006CB921102)+2 种基金the Program for New Century Excellent Talents of the Education Ministry, China (Grant No NCET-07-0524)the Specialized Research Fund for the Doctoral Program of China (Grant No 20070108003)the Natural Science Foundation of Shanxi Province, China (Grant No 2007011003)
文摘Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or loss of single atoms. The typical magnetic gradient is about 29 mT/cm, which evidently reduces the capture rate of magneto-optical trap.
基金Project supported by the Natural Science Foundation of China (Grant Nos 60578018 10434080, and 10374062), the Sino-Russia Joint Project (NSFC-RFBR), by the Key Scientific Project of the Education Ministry of China (Grant No 204019), the Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No 705010) and the Program for Innovative Research Team in University (IRT0516) from the Education Ministry of China, and also by the Research Funds for Youth Academic Leaders of Shanxi Province.
文摘We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.
基金Supported by the National Natural Science Foundation of China under Grant No 91436105the National Basic Research Program of China under Grant No 2011CB921504the Research Project of Shanghai Science and Technology Commission under Grant No 09DJ1400700
文摘Mercury is a promising candidate for the optical lattice clock, due to its low sensitivity to the blackbody radiation. We develop a single folded beam magneto-optical trap for the neutral mercury optical lattice clock, with a 253. 7nm frequency quadrupled laser. Up to 1.7 × 10^6 (202Hg) or 1.5 × 10^6 (199Hg) atoms can be captured, and the atom temperature is lowered to 170μK (202Hg) or 50μK (199Hg). The cold atom signals of all six rich abundant isotopes are observed in this system.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01Z319)the National Basic Research Program of China (Grant No. 2006CB921603)+4 种基金the National Natural Science Foundation of China (Grant Nos. 61008012,11074154,10934004,60978018,60978001,and 60808009)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)the National Natural Science Foundation for Excellent Research Team (Grant No. 60821004)the New Teacher Foundation of the Ministry of Education of China (Grant No. 20101401120004)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)
文摘Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91536218,11374100,10904037,10974055,11034002,and 11274114)the National Key Basic Research and Development Program of China(Grant No.2011CB921602)the Natural Science Foundation of Shanghai Municipality,China(Grant No.13ZR1412800)
文摘Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB921603)the International Science & Technology Cooperation Program of China (Grant No. 2011DFA12490)+1 种基金the National Natural Science Foundation of China (Grant Nos.10934004,60978001,60978018,60808009,61078001,and 61008012)the Natural Science Foundation of Shanxi Province,China (Grant No. 2011011004)
文摘In this paper, ultracold atoms and molecules in a dark magneto-optical trap (MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state. The collision rate is reduced to 0.45 s-1 and the density of the atoms is increased to 5.6 × 1011 cm-3 when the fractional population of the atoms in the bright hyperfine ground state is as low as 0.15. The vibrational spectra of the ultracold cesium molecules are also studied in a standard MOT and in a dark MOT separately. The experimental results are analyzed by using the perturbative quantum approach.
基金Project supported by the Shanghai Pujiang Programme and the National Basic Research Programme of China (Grant No 2005CB724506)the National Natural Science Foundation of China (Grant No 10604057)
文摘This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. The remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.
基金Project supported by the Fundamental Research Funds for the Central Universities of China
文摘Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However,due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap(MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT,which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup.
文摘We study a Zeeman slower using the magnetic field generated by a pair of coils for a magneto-optical trap. The efficiency of the Zeeman slower is shown to be dependent on the intensity and frequency detuning of the laser light for slowing the atoms. With the help of numerical analysis, optimal experimental parameters are explored.Experimentally, the optimal frequency detuning and intensity of the slowing beam are explored, and 4 × 10~7 ytterbium atoms are trapped in the magneto-optical trap.
基金supported by the National Natural Science Foundation of China under Grant Nos.61475091,11274213,and 61227902
文摘A 1470 nm+ 852 nm two-color(TC) cesium(Cs) magneto-optical trap(MOT) with a 6S_(1/2)-6P_(3/2)-7S_(1/2) laddertype system is proposed and experimentally investigated. To the best of our knowledge, it is the first report about the 1470 nm + 852 nm Cs TC-MOT. One of the three pairs of the 852 nm cooling and trapping beams(CTBs) in a conventional Cs MOT is replaced with a pair of the 1470 nm CTBs. Thus, the TC-MOT partially employs the optical radiation forces from photon scattering of the 6P_(3∕2)(F'= 5)-7S_(1∕2)(F''= 4) excited-state transition(1470 nm). This TC-MOT can cool and trap Cs atoms on both the red-and blue-detuning sides of the twophoton resonance. This work may have applications in cooling and trapping of atoms using inconvenient wavelengths and background-free detection of cold and trapped Cs atoms.
基金supported by the National Natural Science Foundation of China (Grant No. 50775127)the Major State Basic Research Development Program of China (Grant No. 2010CB922901)the Independent Research Projects of Tsinghua University,China (Grant No. 2009THZ06)
文摘We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam, the atoms are pushed out continuously with low velocities and a high flux. The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4× 10^9 s-1 by increasing the intensity of the trapping beams. We also present a simple model for describing the dependence of the beam performance on the magneto optical trap trapping laser intensity and the detuning.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61722507,61675121,and 61705123)+4 种基金PCSIRT(Grant No.IRT17R70)the 111 Project(Grant No.D18001)the Shanxi 1331 KSC,the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(OIT),the Applied Basic Research Project of Shanxi Province,China(Grant No.201701D221002)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provincethe Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics.
文摘We report a detailed study of the enhanced optical molasses cooling of Cs atoms,whose large hyperfine structure allows to use the largely red-detuned cooling lasers.We find that the combination of a large frequency detuning of about-110 MHz for the cooling laser and a suitable control for the powers of the cooling and repumping lasers allows to reach a cold temperature of^5.5μK.We obtain 5.1×10^7 atoms with the number density around 1×10^12 cm^-3.Our result gains a lower temperature than that got in other experiments,in which the cold Cs atoms with the temperature of^10μK have been achieved by the optical molasses cooling.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0402300)National Natural Science Foundation of China(Grant No.11404346)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030900)financial support of CAS-TWAS President’s Fellowship Program for International Ph D students
文摘We created an ultracold plasma by photoionizing the laser-cooled and trapped rubidium atoms in a magneto-optical trap. In the externally applied direct current(DC) electric field environment,the electrons which escape from the potential well of the ultracold plasma were detected for different numbers of the ions and initial kinetic energies of the electrons. The results are in good agreement with the calculations, based on the Coulomb potential well model, indicating that the external DC field is an effective tool to adjust the depth of potential well of the plasma, and it is possible to create an ultracold plasma in a controlled manner.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.10434080,10374062,60578018)the Shanxi Bajianrencai Program,the Cultivation Fund of the Key Scientific and Technical Innovation Project(Grant No.705010)the Program for Changjiang Scholars and Innovative Research Team in the University(IRT0516)of the Ministry of Education of China.
文摘Optical dipole trap(ODT)is becoming an important tool of manipulating neu-tral atoms.In this paper ODT is realized with a far-off resonant laser beam strongly fo-cused in the magneto-optical trap(MOT)of cesium atoms.The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the opti-cal dipole trap simultaneously.The advantages of our experimental scheme are discussed,and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.
基金supported by the State Basic Key Research Program of China (Grant No. 2012CB921601)China National Funds for Distinguished Young Scientists (Grant No. 11125418)the National Natural Science Foundation of China (Grant Nos. 10974125,61121064 and60978017)
文摘A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom steps and photon anti-bunching are observed by a photon-counting-based HBT system using fluorescence light. The average atom dwelling time in the FORT is about 9 s. To reduce the background noise in the detection procedure we employ a weak probe laser tuned to the D1 line to il- lurninate the single atom from the direction perpendicular to the large-numerical-aperture collimation system. The second or- der degree of coherence g(2)(r)=0.12_+0.02 is obtained directly from the fluorescence light of the single atom without deducting the background. The background light has been suppressed to 10 counts per 50 ms, which is much lower compared with the reported results. The measured g(2)(r) is in good agreement with theoretical analysis. The system provides a simple and effi- cient method to manipulate and measure single neutral atoms, and opens a way to create an efficient controlled single-photon source.
文摘We report the effective slowing and trapping of Cs atoms in an ultrahigh-vacuum apparatus.The heated Cs atoms in an oven are slowed using a Zeeman slower after the oven chamber and then trapped using a magneto-optical trap in a science chamber.Compared to the traditional vacuum pressure of~10^(−7)Pa determined by the vapor pressure of Cs atoms in the oven chamber,the designed cold nipple and differential pumping tube are used between the oven and the oven chamber to achieve a lower vacuum pressure of~3.6×10^(−9)Pa.This is beneficial for achieving and maintaining an ultrahigh vacuum in the science chamber.We demonstrate the performance of our apparatus through the effective slowing of Cs atoms and an optimal magneto-optical trap.
基金supported by the Russian Science Foundation (No.23-22-00255)。
文摘We developed a new single-layer atom chip with an additional U-shaped current-carrying structure.The new U-shaped microwire creates optimized magnetic field distribution,which increases the trapping volume of a magneto-optical trap(MOT) near the chip.Our approach allows one to localize more atoms,while a setup remains relatively simple (single-layer approach) and consumes low current (up to 10 A). The total number of trapped^(87)Rb atoms in our setup is 5×10^(7).