A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon...A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.展开更多
The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic com...The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.展开更多
In order to reveal the temperature change in coal gas desorption process,the temperature variation in coal gas desorption process under different particle sizes is analyzed with infrared thermal imager.The infrared vi...In order to reveal the temperature change in coal gas desorption process,the temperature variation in coal gas desorption process under different particle sizes is analyzed with infrared thermal imager.The infrared video signals obtained by the experiment are processed with SAT.Then the infrared radiation signals are processed by EMD with Hilbert–Huang and the infrared radiation noise is effectively removed.The research results show that the desorption process,with the change of the temperature,is an endothermic process.The coal absorbs heat when the gas is desorbed and the temperature drops.The coal body temperature drop range is obviously related to coal particle size.The smaller the particle size is,the bigger the temperature drop becomes.The temperature variation curves in the process of coal gas desorption under different particle sizes are fitted,and they comply with the exponential function.The research results lay the theoretical and experimental foundation for non-contact prediction on working face of coal and gas outburst with infrared thermal image technology.展开更多
In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional fro...In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional frost heave test system of infrared radiation technology, instead of a traditional thermistor method. Temperatures of the freezing fringe and segregated ice were measured in a non-contact mode. The results show that accurate and precise temperatures of ice segregation can be obtained by infrared thermal imaging systems. A self-developed inversion program inverted the temperature field of frozen soils. Based on our analysis of temperature variation in segregated ice and our study of the relationship between temperature and rate of ice segregation in cooling and warming processes during intermittent freezing, the mechanism of decreasing frost heave of frozen soils by controlling the growth of final lenses with an intermittent freezing mode, can be explained properly.展开更多
The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and ...The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and failure.In this paper,a self-developed stress-gas coupling failure infrared experimental system was used to analyse the infrared radiation temperature(IRT)and infrared thermal image precursor characteristics of gas-free coal and gas-bearing coal.The changes in the areas of the infrared temperature anomalous precursor regions and the effect of the gas on the infrared precursors were examined.The results show that high-temperature anomalous precursors arise mainly when the gas-free coal fails under loading,whereas the gas-bearing coal has high-temperature and low-temperature anomalous precursors.The area of the high-temperature anomalous precursor is approximately 30%–40%under gasbearing coal unstable failure,which is lower than the 60%–70%of the gas-free coal.The area of the low-temperature abnormal precursor is approximately 3%–6%,which is higher than the 1%–2%of the gas-free coal.With increasing gas pressure,the area of the high-temperature anomalous precursor gradually decreases,and the area of the low-temperature anomalous precursor gradually increases.The highand low-temperature anomalous precursors of gas-bearing coal are mainly caused by gas desorption,volume expansion,and thermal friction.The presence of gas inhibits the increase in IRT on the coal surface and increases the difficulty of infrared radiation(IR)monitoring and early warning for gas-bearing coal.展开更多
Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)P(VDF-TrFE-CFE)is a relaxor ferroelectric polymer,which exhibits a temperature-independent electrocaloric effect at room temperature.In this work,the ele...Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)P(VDF-TrFE-CFE)is a relaxor ferroelectric polymer,which exhibits a temperature-independent electrocaloric effect at room temperature.In this work,the electrocaloric effect in P(VDF-TrFE-CFE)film was directly analysed using infrared imaging.P(VDF-TrFE-CFE)64.8%/27.4%/7.8%(in mole)film of(15±1)mm thickness was deposited on polyethylene naphthalate substrate.Direct ECE of P(VDF-TrFE-CFE)film was measured from 15 to 35C at different electric fields.A maximum adiabatic temperature change(DTad)of 3.58 K was measured during the cooling cycle at a field of 100 V/mm at 30C.Finite element analysis of temperature dissipation through the sample estimated that the actual temperature change within P(VDF-TrFE-CFE)film was 4.3 K.Despite the thermal mass of the substrate,a substantial ECE was observed in P(VDF-TrFE-CFE)films.This electrocaloric terpolymer composition could be of interest for electrocaloric cooling applications.展开更多
In order to reduce the temperature measurement error with the uncooled infrared thermal imager, experiments were conducted to evaluate the effects of environment temperature and measurement distance on the measurement...In order to reduce the temperature measurement error with the uncooled infrared thermal imager, experiments were conducted to evaluate the effects of environment temperature and measurement distance on the measurement error of human eye temperature. First, the forehead temperature was used as an intermediate variable to obtain the actual temperature of human eyes. Then, the effects of environment temperature and measurement distance on the temperature measurement were separately analyzed. Finally, an empirical model was established to correlate actual eye temperature with the measured temperature, environment temperature, and measurement distance. To verify the formula, three different environment temperatures were tested at different distances. The measurement errors were substantially reduced using the empirical model for temperature correction. The results show that this method can effectively improve the accuracy of temperature measurement using the infrared thermal imager.展开更多
We establish a single diode laser sensor system to obtain temperature and water concentration in CH4/air premixed flame.Line-of-sight properties are analyzed,but line-of-sight results are not path average values for t...We establish a single diode laser sensor system to obtain temperature and water concentration in CH4/air premixed flame.Line-of-sight properties are analyzed,but line-of-sight results are not path average values for temperature measurements.The measurements are performed on a flat burner based on scannedwavelength direct absorption spectroscopy using two adjacent water lines at 7153.75 and 7154.35 cm 1.Real-time results are acquired using a data acquisition card with a Labview data processing program.The standard uncertainties of the temperature and water concentration measurements are 2.3% and 5.1%,respectively.展开更多
An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature res...An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature responses of primary initiation FAE and secondary initiation FAE in real time. And the characteristics of their temperature history curves were compared and analyzed. The results show that the primary initiation FAE has higher explosion temperature and longer duration compared to the secondary initiation FAE.展开更多
This paper presents a way to measure the true temperature of the electronic devices without disturbing their normal operating conditions, which involved with estimating target emissivity, background temperature correc...This paper presents a way to measure the true temperature of the electronic devices without disturbing their normal operating conditions, which involved with estimating target emissivity, background temperature correctly and choosing infrared transparent material and its transmission estimation. The temperature distributions of the main board in personal computer were measured by the method presented here with infrared thermography in several different running conditions. The measurement errors and their possible remedies are also discussed.展开更多
Although automobile is an indispensable vehicle to modern life, it also serves as a social problem with a big traffic accident. Among the reasons of traffic accidents, careless driving accounts for the largest part. S...Although automobile is an indispensable vehicle to modern life, it also serves as a social problem with a big traffic accident. Among the reasons of traffic accidents, careless driving accounts for the largest part. So in order to avoid the careless driving, a system which can measure the posture of a driver and warns driver to drive carefully in the case of looking aside is necessary. Although the image measurement method is used broadly, there is a problem on which measurement accuracy is influenced by environment light, makeup of the driver, etc. in the general method based on the two-dimensional image. Therefore, in this study, we propose an image measurement method to obtain the head posture of driver. First we use three-dimensional measurement method which based on the infrared pattern projection to get 3-D information of head, and then we calculate the angle for faces. In this paper, we explain the composition method of an experiment system, and the results of head posture measurement experiment.展开更多
Mechanism of satellitic thermo-infrared brightness temperature and temperature increasing is studied. Experiments are made with a gas sample taken around the epicenter area. The gas sample is proved to contain green h...Mechanism of satellitic thermo-infrared brightness temperature and temperature increasing is studied. Experiments are made with a gas sample taken around the epicenter area. The gas sample is proved to contain green house gases such as CH4 and CO2 which have increased by tens of thousands of times. In addition, lab research also proves that CH4 and CO2 can obtain energy under the action of transient electric field and release heat, thus resulting in a temperature increase of 2-6℃ . Also a brief account of practices since 1990 is given; altogether 40 short-term and impending earthquake predictions have been made, with 9 precise ones whose three main factors of an earthquake are clearly depicted, and 12 fairly good ones. These predictions include 3 earthquakes of Ms≥7, 4 of M8≥6.0 and the rest are around MS5.0. Yet there are earthquakes left out of prediction. Finally the evolutionary processing characters of satellitic thermo-infrared brightness temperature and temperature increase before the Lijiang earthquake on Feb. 3, 1996 and Tangshan earthquake on April 14, 1998 are introduced in detail. The conclusion makes a study on the regularities of connection among time, space and stress when there appears the satellitic thermal-infrared brightness temperature and temperature increasing anomaly.展开更多
It is a new research direction to realize infrared(IR) image reconstruction using compressed sensing(CS) theory. In the field of CS, the construction of measurement matrix is very principal. At present, the types of m...It is a new research direction to realize infrared(IR) image reconstruction using compressed sensing(CS) theory. In the field of CS, the construction of measurement matrix is very principal. At present, the types of measurement matrices are mainly random and deterministic. The random measurement matrix can well satisfy the property of measurement matrix, but needs a large amount of storage space and has an inconvenient in hardware implementation. Therefore, a deterministic measurement matrix construction method is proposed for IR image reconstruction in this paper. Firstly, a series of points are collected on Archimedes spiral to construct a definite sequence; then the initial measurement matrix is constructed; finally, the deterministic measurement matrix is obtained according to the required sampling rate. Simulation results show that the IR image could be reconstructed by the measured values obtained through the proposed measurement matrix. Moreover, the proposed measurement matrix has better reconstruction performance compared with the Gaussian and Bernoulli random measurement matrices.展开更多
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma...Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.展开更多
Body temperature is an important physiological indicator in the whole process of pig breeding.Temperature measurement is also an effective means to assist in disease diagnosis and pig health monitoring.In the conventi...Body temperature is an important physiological indicator in the whole process of pig breeding.Temperature measurement is also an effective means to assist in disease diagnosis and pig health monitoring.In the conventional method of measuring body temperature,a mercury column is used to obtain the rectal temperature.The operation of thismethod is complicated and requires a large amount of labor.This kind of temperature measurement method is contact and canmake the pig stressed,which is disadvantageous for the healthy growth of pigs.Therefore,rectal temperaturemeasurement no longer meets the needs of the large-scale pig industry in China's welfare agriculture.In recent years,the emerging pig body temperature detection technologies are electronic temperaturemeasurement technology,infrared temperature measurement technology and so on.Infrared temperature measurement technology has been the main means of measuring the temperature of pig body surface with its advantages of non-contact,long distance and real-time.At present,infrared temperature measurement technology and infrared image processing technology used in pig breeding are still in the exploration stage.Nowadays,the infrared temperature measurement equipment based on point-by-point analysis represented by infrared thermometer and temperature measurement equipment based on full-field analysis represented by infrared thermal imager have been applied to pig breeding industry.These types of temperaturemeasurement are more in line with the needs of the pig breeding industry to transform and upgrade to the automation,in line with the development concept of welfare farming and smart agriculture,and its development prospects are very impressive.展开更多
This paper established the mathematical model of bridge wire temperature rise under direct current condition and gave the solution. It computed bridge wire temperature by using the thermal-electric coupling method pro...This paper established the mathematical model of bridge wire temperature rise under direct current condition and gave the solution. It computed bridge wire temperature by using the thermal-electric coupling method provided by ANSYS-Workbench finite element analysis software. In the end, the temperature bridge wire applied to different electric current was measured by the infrared thermal imaging temperature measurement method. The result shows that the ANSYS simulation results are in agreement with the theoretical calculation and the experimental results. It is feasible to compute bridge wire temperature of initiator by using ANSYS-Workbench software, and it is an important method to analyze complex structure of pyrotechnics.展开更多
文摘A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.
基金supported by the National Nature Science Foundation of China (Grants 11132011 and 11472288)
文摘The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.
基金provided by the National Natural Science Foundation of China (No.51174157)the Doctor Start-up Fund of Xi’an University of Science and Technology of China (No.2013QDJ005)the Research Development Fund of Xi’an University of Science and Technology of China (No.201244)
文摘In order to reveal the temperature change in coal gas desorption process,the temperature variation in coal gas desorption process under different particle sizes is analyzed with infrared thermal imager.The infrared video signals obtained by the experiment are processed with SAT.Then the infrared radiation signals are processed by EMD with Hilbert–Huang and the infrared radiation noise is effectively removed.The research results show that the desorption process,with the change of the temperature,is an endothermic process.The coal absorbs heat when the gas is desorbed and the temperature drops.The coal body temperature drop range is obviously related to coal particle size.The smaller the particle size is,the bigger the temperature drop becomes.The temperature variation curves in the process of coal gas desorption under different particle sizes are fitted,and they comply with the exponential function.The research results lay the theoretical and experimental foundation for non-contact prediction on working face of coal and gas outburst with infrared thermal image technology.
基金supported by the Key Project of the National Natural Science Foundation of China (No. 50534040)the Project of the National Natural Science Foundation of China (No. 40471021)
文摘In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control, we used an open one-dimensional frost heave test system of infrared radiation technology, instead of a traditional thermistor method. Temperatures of the freezing fringe and segregated ice were measured in a non-contact mode. The results show that accurate and precise temperatures of ice segregation can be obtained by infrared thermal imaging systems. A self-developed inversion program inverted the temperature field of frozen soils. Based on our analysis of temperature variation in segregated ice and our study of the relationship between temperature and rate of ice segregation in cooling and warming processes during intermittent freezing, the mechanism of decreasing frost heave of frozen soils by controlling the growth of final lenses with an intermittent freezing mode, can be explained properly.
基金supported by the National Natural Science Foundation of China(No.52074280)the National Natural Science Foundation of China(No.52004016)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and failure.In this paper,a self-developed stress-gas coupling failure infrared experimental system was used to analyse the infrared radiation temperature(IRT)and infrared thermal image precursor characteristics of gas-free coal and gas-bearing coal.The changes in the areas of the infrared temperature anomalous precursor regions and the effect of the gas on the infrared precursors were examined.The results show that high-temperature anomalous precursors arise mainly when the gas-free coal fails under loading,whereas the gas-bearing coal has high-temperature and low-temperature anomalous precursors.The area of the high-temperature anomalous precursor is approximately 30%–40%under gasbearing coal unstable failure,which is lower than the 60%–70%of the gas-free coal.The area of the low-temperature abnormal precursor is approximately 3%–6%,which is higher than the 1%–2%of the gas-free coal.With increasing gas pressure,the area of the high-temperature anomalous precursor gradually decreases,and the area of the low-temperature anomalous precursor gradually increases.The highand low-temperature anomalous precursors of gas-bearing coal are mainly caused by gas desorption,volume expansion,and thermal friction.The presence of gas inhibits the increase in IRT on the coal surface and increases the difficulty of infrared radiation(IR)monitoring and early warning for gas-bearing coal.
基金Fonds National de la Recherche(FNR)of Luxembourg under the grant THERMODIMAT/C20/MS/14718071//Defay,CAMELHEAT/C17/MS/11703691/Defay,MASSENA PRIDE/MASSENA/15/10935404/Defay Siebentritt and CALPOL BRIDGES 2O2O/MS/15410586/Defay.
文摘Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)P(VDF-TrFE-CFE)is a relaxor ferroelectric polymer,which exhibits a temperature-independent electrocaloric effect at room temperature.In this work,the electrocaloric effect in P(VDF-TrFE-CFE)film was directly analysed using infrared imaging.P(VDF-TrFE-CFE)64.8%/27.4%/7.8%(in mole)film of(15±1)mm thickness was deposited on polyethylene naphthalate substrate.Direct ECE of P(VDF-TrFE-CFE)film was measured from 15 to 35C at different electric fields.A maximum adiabatic temperature change(DTad)of 3.58 K was measured during the cooling cycle at a field of 100 V/mm at 30C.Finite element analysis of temperature dissipation through the sample estimated that the actual temperature change within P(VDF-TrFE-CFE)film was 4.3 K.Despite the thermal mass of the substrate,a substantial ECE was observed in P(VDF-TrFE-CFE)films.This electrocaloric terpolymer composition could be of interest for electrocaloric cooling applications.
基金supported by the National Key Research and Development Program of China(No.2016YFD0500903)the National Natural Science Foundation of China(Nos.61501422,61705218)
文摘In order to reduce the temperature measurement error with the uncooled infrared thermal imager, experiments were conducted to evaluate the effects of environment temperature and measurement distance on the measurement error of human eye temperature. First, the forehead temperature was used as an intermediate variable to obtain the actual temperature of human eyes. Then, the effects of environment temperature and measurement distance on the temperature measurement were separately analyzed. Finally, an empirical model was established to correlate actual eye temperature with the measured temperature, environment temperature, and measurement distance. To verify the formula, three different environment temperatures were tested at different distances. The measurement errors were substantially reduced using the empirical model for temperature correction. The results show that this method can effectively improve the accuracy of temperature measurement using the infrared thermal imager.
基金supported by the State Key Laboratory of Laser Interaction with Matter under Grant No.SKL110905
文摘We establish a single diode laser sensor system to obtain temperature and water concentration in CH4/air premixed flame.Line-of-sight properties are analyzed,but line-of-sight results are not path average values for temperature measurements.The measurements are performed on a flat burner based on scannedwavelength direct absorption spectroscopy using two adjacent water lines at 7153.75 and 7154.35 cm 1.Real-time results are acquired using a data acquisition card with a Labview data processing program.The standard uncertainties of the temperature and water concentration measurements are 2.3% and 5.1%,respectively.
基金Sponsored by the National Natural Science Foundation of China (10772032)
文摘An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature responses of primary initiation FAE and secondary initiation FAE in real time. And the characteristics of their temperature history curves were compared and analyzed. The results show that the primary initiation FAE has higher explosion temperature and longer duration compared to the secondary initiation FAE.
基金This work was partly performed while the principal author was in the School of Mechanical and Manufacturing Engineering at the University of New South Wales, Australia, financially supported by China Scholarship Council (CSC).
文摘This paper presents a way to measure the true temperature of the electronic devices without disturbing their normal operating conditions, which involved with estimating target emissivity, background temperature correctly and choosing infrared transparent material and its transmission estimation. The temperature distributions of the main board in personal computer were measured by the method presented here with infrared thermography in several different running conditions. The measurement errors and their possible remedies are also discussed.
文摘Although automobile is an indispensable vehicle to modern life, it also serves as a social problem with a big traffic accident. Among the reasons of traffic accidents, careless driving accounts for the largest part. So in order to avoid the careless driving, a system which can measure the posture of a driver and warns driver to drive carefully in the case of looking aside is necessary. Although the image measurement method is used broadly, there is a problem on which measurement accuracy is influenced by environment light, makeup of the driver, etc. in the general method based on the two-dimensional image. Therefore, in this study, we propose an image measurement method to obtain the head posture of driver. First we use three-dimensional measurement method which based on the infrared pattern projection to get 3-D information of head, and then we calculate the angle for faces. In this paper, we explain the composition method of an experiment system, and the results of head posture measurement experiment.
基金Project supported by the State 863 High-Tech Project (Grant No. 863-2-7-4-18).
文摘Mechanism of satellitic thermo-infrared brightness temperature and temperature increasing is studied. Experiments are made with a gas sample taken around the epicenter area. The gas sample is proved to contain green house gases such as CH4 and CO2 which have increased by tens of thousands of times. In addition, lab research also proves that CH4 and CO2 can obtain energy under the action of transient electric field and release heat, thus resulting in a temperature increase of 2-6℃ . Also a brief account of practices since 1990 is given; altogether 40 short-term and impending earthquake predictions have been made, with 9 precise ones whose three main factors of an earthquake are clearly depicted, and 12 fairly good ones. These predictions include 3 earthquakes of Ms≥7, 4 of M8≥6.0 and the rest are around MS5.0. Yet there are earthquakes left out of prediction. Finally the evolutionary processing characters of satellitic thermo-infrared brightness temperature and temperature increase before the Lijiang earthquake on Feb. 3, 1996 and Tangshan earthquake on April 14, 1998 are introduced in detail. The conclusion makes a study on the regularities of connection among time, space and stress when there appears the satellitic thermal-infrared brightness temperature and temperature increasing anomaly.
基金the National Natural Science Foundation of China(No.61571146)
文摘It is a new research direction to realize infrared(IR) image reconstruction using compressed sensing(CS) theory. In the field of CS, the construction of measurement matrix is very principal. At present, the types of measurement matrices are mainly random and deterministic. The random measurement matrix can well satisfy the property of measurement matrix, but needs a large amount of storage space and has an inconvenient in hardware implementation. Therefore, a deterministic measurement matrix construction method is proposed for IR image reconstruction in this paper. Firstly, a series of points are collected on Archimedes spiral to construct a definite sequence; then the initial measurement matrix is constructed; finally, the deterministic measurement matrix is obtained according to the required sampling rate. Simulation results show that the IR image could be reconstructed by the measured values obtained through the proposed measurement matrix. Moreover, the proposed measurement matrix has better reconstruction performance compared with the Gaussian and Bernoulli random measurement matrices.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.
基金This work was supported by National Key Research and Development Program(2017YFD0701601-3)Research Platform Construction Project and Graduate Training Quality Improvement Project(2017YAL009)of Tianjin Agricultural University.
文摘Body temperature is an important physiological indicator in the whole process of pig breeding.Temperature measurement is also an effective means to assist in disease diagnosis and pig health monitoring.In the conventional method of measuring body temperature,a mercury column is used to obtain the rectal temperature.The operation of thismethod is complicated and requires a large amount of labor.This kind of temperature measurement method is contact and canmake the pig stressed,which is disadvantageous for the healthy growth of pigs.Therefore,rectal temperaturemeasurement no longer meets the needs of the large-scale pig industry in China's welfare agriculture.In recent years,the emerging pig body temperature detection technologies are electronic temperaturemeasurement technology,infrared temperature measurement technology and so on.Infrared temperature measurement technology has been the main means of measuring the temperature of pig body surface with its advantages of non-contact,long distance and real-time.At present,infrared temperature measurement technology and infrared image processing technology used in pig breeding are still in the exploration stage.Nowadays,the infrared temperature measurement equipment based on point-by-point analysis represented by infrared thermometer and temperature measurement equipment based on full-field analysis represented by infrared thermal imager have been applied to pig breeding industry.These types of temperaturemeasurement are more in line with the needs of the pig breeding industry to transform and upgrade to the automation,in line with the development concept of welfare farming and smart agriculture,and its development prospects are very impressive.
文摘This paper established the mathematical model of bridge wire temperature rise under direct current condition and gave the solution. It computed bridge wire temperature by using the thermal-electric coupling method provided by ANSYS-Workbench finite element analysis software. In the end, the temperature bridge wire applied to different electric current was measured by the infrared thermal imaging temperature measurement method. The result shows that the ANSYS simulation results are in agreement with the theoretical calculation and the experimental results. It is feasible to compute bridge wire temperature of initiator by using ANSYS-Workbench software, and it is an important method to analyze complex structure of pyrotechnics.