BACKGROUND: Phage display technology has become a vital tool in studies aimed at identifying molecules binding to a specific target. It enables the rapid generation and selection of high affinity, fully human antibody...BACKGROUND: Phage display technology has become a vital tool in studies aimed at identifying molecules binding to a specific target. It enables the rapid generation and selection of high affinity, fully human antibody product candidates to essentially any disease target appropriate for antibody therapy. In this study, we prepared the recombinant single-chain fragment variable ( ScFv) antibody to hepatitis B virus surface antigen (HBsAg) by the phage display technology for obtaining a virus-targeting mediator. METHODS: mRNA was isolated from B-lymphocytes from a healthy volunteer and converted into cDNA. The fragment variables of heavy and light chain were amplified separately and assembled into ScFv DNA with a specially constructed DNA linker by polymerase chain reaction. The ScFv DNA was ligated into the phagmid vector pCANT-AB5E and the ligated sample was transformed into competent E. coli TG1. The transformed cells were infected with M13K07 helper phage to form a human recombinant phage antibody library. The volume and recombinant rate of the library were evaluated by bacterial colony count and restriction analysis. After two rounds of panning with HBsAg. the phage clones displaying ScFv of the antibody were selected by enzyme-linked immunosorbant assay ( ELISA) from the enriched phage clones. The antigen binding affinity of the positive clone was detected by competition ELISA. HB2151 E. coli was transfected with the positive phage clone demonstrated by competition ELISA for production of a soluble form of the anti-HBsAg ScFv. ELISA assay was used to detect the antigen binding affinity of the soluble anti-HBsAg ScFv. Finally, the relative molecular mass of soluble anti-HBsAg ScFv was measured by SDS-PAGE. RESULTS: The variable heavy ( VH ) and variable light (VL) and ScFv DNAs were about 340bp, 320bp and 750bp, respectively. The volume of the library was up to 2 × 106 and 8 of 10 random clones were recombinants. Two phage clones could strongly compete with the original HBsAb for binding to HBsAg. Within 2 strong positive phage clones, the soluble anti-HBsAg ScFv from one clone was found to have the binding activity with HBsAg. SDS-PAGE showed that the relative molecular weight of soluble anti-HBsAg ScFv was 32 kDa. CONCLUSION: The anti-HBsAg ScFv successfully produced by phage antibody technology may be useful for broadening the scope of application of the antibody.展开更多
AIM: To generate soluble single chain variable fragments (ScFv) of monoclonal antibody MC3 recognizing colorectal and gastric carcinomas. METHODS: mRNA was isolated from the hybridoma cell line producing MC3 and the D...AIM: To generate soluble single chain variable fragments (ScFv) of monoclonal antibody MC3 recognizing colorectal and gastric carcinomas. METHODS: mRNA was isolated from the hybridoma cell line producing MC3 and the DNAs encoding variable domains of heavy and light chains (VH and VL) of the antibody were amplified separately by RT-PCR and assembled into ScFv DNA with a linker DNA. The ScFv DNA was ligated into the phagemid vector pCANTAB5E and the ligated sample was transformed into E.coli TG1.The transformed cells were infected with M13KO7 helper phage to yield recombinant phages. After two rounds of panning with gastric carcinoma cell line AGS highly expressing MC3-binding antigen, the phage clones displaying ScFv fragments of the antibody were selected by ELISA. 4 phage clones showing strong signal in ELISA were used to infect E.coli HB2151 to express soluble ScFvs. The soluble ScFvs were identified by Dot blot and Western blot, and their antigen-binding activity was assayed by ELISA. The VH and VL DNAs of the ScFv DNA derived from phage clone 19 were sequenced. RESULTS: The VH,VL and ScFv DNAs were about 340 bp, 320 bp and 750 bp respectively. After two rounds of panning to the recombinant phages, 18 antigen-positive phage clones were selected from 30 preselected phage clones by ELISA. All the soluble ScFvs derived from the 4 out of the 18 antigen-positive phage clones were about M(r)32000 and concentrated in periplasmatic space under the given culture condition. The soluble ScFvs could bind the antigen, and they shared the same binding site with MC3. The sequences of the VH and VL DNAs of the MC3 ScFv showed that the variable antibody genes belonged to the IgG1 subgroup,kappa-type. CONCLUSION: The soluble ScFv of MC3 is successfully produced, which not only provides a possible novel targeting vehicle for in vivo and in vitro study on associated cancers, but also offers the antibody a stable genetic source.展开更多
BACKGROUND:Studies have shown that monoclonal or polyclonal antibody injections of amyloid β peptide are effective in removing amyloid β peptide overload in the brain. OBJECTIVE: Based on successful screening of a...BACKGROUND:Studies have shown that monoclonal or polyclonal antibody injections of amyloid β peptide are effective in removing amyloid β peptide overload in the brain. OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloidβpeptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide. DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006. MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library. METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a T easy plasmid for pT-scFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvAβ was cut by EcoRI and NotI endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvAβ expression vector, which was confirmed by gene sequencing. Linearized pPIC9K-scFvAβ was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5% methanol to express human single-chain fragment variable antibody specific to amyloid β peptide. MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was used to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris. RESULTS: Gene sequencing confirmed pPIC9K-scFvAβ orientation. Recombinants were obtained by linearized pPIC9K-scFvAβ transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size. CONCLUSION: The expression vector pPIC9K-scFvAβ was successfully constructed. Human single-chain fragment variable antibody specific to amyloid β peptide was recombinantly expressed in Pichia pastoris.展开更多
AIM To directly radiolabel an anti-hepatomamAb fragment HAb18 F(ab’)<sub>2</sub> with <sup>99m</sup>Tc bystannous-reduced method,and assess thestability,biodistribution and radioimmun-oimag...AIM To directly radiolabel an anti-hepatomamAb fragment HAb18 F(ab’)<sub>2</sub> with <sup>99m</sup>Tc bystannous-reduced method,and assess thestability,biodistribution and radioimmun-oimaging(RⅡ).METHODS Immunoreactive fraction wasdetermined according to Lindmo’s method.Ellman’s reagent was used to determine thenumber of thiols in the reduced F(ab’)<sub>2</sub>.Labelingefficiency and homogeneity were measured bypaper chromatography,sodium dodecylsulphatepolyacrylamide gel electrophoresis(SDS-PAGE)and autoradiography.Challenge assay involvedthe incubation of aliquots of labeled antibody inethylenediaminetetraacetate( EDTA )and L-cysteine(L-cys)solutions with different molarratio at 37℃ for 1h,respectively.Investigationsin vivo utilized nude mice bearing humanhepatocellular carcinoma(HHCC)xenograftswith gamma camera imaging and tissuebiodistribution studies at regular intervals.RESULTS The labeling procedure was finishedwithin 1.5 h compared with the'pretinning'method which would take at least 21h.In vitrostudies demonstrated that the radiolabeled mAbfragment was homogeneous and retained itsimmunoreactivity.Challenge studies indicatedthat <sup>99m</sup>Tc-labeled HAb18 F(ab’)<sub>2</sub> in EDTA is morestable than in L-cys.Imaging and biodistribution showed a significant tumor uptake at 24 h post-injection of <sup>99m</sup>Tc-labeled HAb18 F(ab’)<sub>2</sub>.Theblood,kidney,liver and tumor uptakes at 24hwere 0.56±0.09,56.45±11.36,1.43±0.27 and6.57±3.01(%ID/g),respectively.CONCLUSION <sup>99m</sup>Tc-HAb18 F(ab’)<sub>2</sub> conjugateprepared by this direct method appears to be aneffective way to detect hepatoma in nude micemodel.展开更多
AIM: To construct the expression vector of B3 (scdsFv)-SEA (D227A) and to identify its binding and cytotoxic ability to B3 antigen positive carcinoma cell lines.METHODS: This fusion protein was produced by a bacterial...AIM: To construct the expression vector of B3 (scdsFv)-SEA (D227A) and to identify its binding and cytotoxic ability to B3 antigen positive carcinoma cell lines.METHODS: This fusion protein was produced by a bacterial expression system in this study. It was expressed mainly in the inclusion body. The gene product was solubilized by guanidine hydrochloride, refolded by conventional dilution method, and purified using SP-sepharose cation chromatography.RESULTS: The expression vector B3 (scdsFv)-SEA-PETwas constructed, the expression product existed mainly in the inclusion body, the refolding product retained the binding ability of the single-chain antibody and had cytotoxic effect on HT-29 colon carcinoma cells. The stability assay showed that the resulting protein was stable at 37 ℃.CONCLUSION: This genetically engineered B3 (scdsFv)-SEA fusion protein has bifunction of tumor targeting and tumor cell killing and shows its promises as an effective reagent for tumor-targeted immunotherapy.展开更多
Objective.Using monoclonal antibody (mAb) Fab′ fragment to develop mAb immunoconjugates for cancer. Methods.Fab′ fragment of mAb 3A5 was prepared by digestion of the antibody with pepsin and then reduced by dithioth...Objective.Using monoclonal antibody (mAb) Fab′ fragment to develop mAb immunoconjugates for cancer. Methods.Fab′ fragment of mAb 3A5 was prepared by digestion of the antibody with pepsin and then reduced by dithiothreitol (DTT),while Fab′ fragment of mAb 3D6 was obtained by digestion of the antibody with ficin and subsequently reduced by β mercaptoethanol.The conjugation between Fab′ fragment and pingyangmycin (PYM),an antitumor antibiotic,was mediated by dextran T 40.Immunoreactivity of Fab′ PYM conjugates with cancer cells was determined by ELISA,and the cytotoxicity of those conjugates to cancer cells was determined by clonogenic assay.Antitumor effects of the Fab′ PYM conjugates were evaluated by subcutaneously transplanted tumors in mice. Results.The molecular weight of Fab′ fragment was approximately 53 kD,while the average molecular weight of Fab′ PYM conjugate was 170 kD.The Fab′ PYM conjugates showed immunoreactivity with antigen relevant cancer cells and selective cytotoxicity against target cells.Administered intravenously,Fab′ PYM conjugates were more effective against the growth of tumors in mice than free PYM and PYM conjugated with intact mAb. Conclusion.Fab′ PYM conjugate may be capable of targeting cancer cells and effectively inhibiting tumor growth,suggesting its therapeutic potential in cancer treatment.展开更多
Antibodies are currently the fastest growing class of therapeutic proteins. When antibody fragments are included, there are over thirty-five antibody-based medicines approved for human therapy. Many more antibody and ...Antibodies are currently the fastest growing class of therapeutic proteins. When antibody fragments are included, there are over thirty-five antibody-based medicines approved for human therapy. Many more antibody and antibody-like fragments are being evaluated clinically. Production of antibody fragments can be efficient and their compact size can allows for better tissue extravasation into solid tumors than full antibodies. Unfortunately, a key limitation of antibody fragments for systemic use is their short half-life in circulation. Prolonging their circulation half-life can be accomplished clinically by the covalent conjugation of the antibody fragment to the water-soluble polymer, poly(ethylene glycol) (PEG). Many polymers and strategies are also being pursued to increase antibody fragment half-life.展开更多
The development of single-chain Fv antibody (scFv) by recombinant gene expression is an important milestone for cancer therapy. Single-chain antibodies are reconstructed for cancer-targeted therapy to provide good pen...The development of single-chain Fv antibody (scFv) by recombinant gene expression is an important milestone for cancer therapy. Single-chain antibodies are reconstructed for cancer-targeted therapy to provide good penetration into tumor tissue and to improve their pharmacokinetics in vivo, offering a clinically valuable application. The relationship needs to be analyzed that there may be some variations between the structure and function of the fusion proteins, and the relationship between the structure and function of protein molecules was obtained through analyzing relevant literature at home and abroad as well as modeling analysis. Through our analysis of the interaction region between antibody and antigen, and of the binding sites for molecular conformation, it is clear that existing antibodies need to be modified at the DNA sequence level, enhancing the biological activity of the antibodies. Based on the view that bio-molecular computer models are closely integrated with biological experiments, a bio-molecular structure-activity relationship model can be established in terms of molecular conformation, physical and chemical properties and the biological activity of single-chain antibodies. Two enlightenments are obtained from our analysis. On one hand, the structure-activity relationship is clear for new immune molecules at the gene expression level. On the other hand, a single-chain antibody molecule can be designed and optimized for the cancer-oriented treatment. In this article, we provided the theoretical and experimental basis for the development of single-chain antibodies appropriate for retinoblastoma therapy.展开更多
In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human an...In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.展开更多
Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion pro-tein was expressed in Pichia pa...Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion pro-tein was expressed in Pichia pastoris. The afifnity of scFv-human serum albumin fusion protein to bind to acetylcholine receptor at the neuromuscular junction of human intercostal muscles was detected by immunolfuorescence staining. The ability of the fusion protein to block myas-thenia gravis patient sera binding to acetylcholine receptors and its stability in healthy serum were measured by competitive ELISA. The results showed that the inhibition rate was 2.0-77.4%, and the stability of fusion protein in static healthy sera was about 3 days. This approach suggests the scFv-human serum albumin is a potential candidate for speciifc immunosuppressive therapy of myasthenia gravis.展开更多
Monoclonal antibodies (mAbs) have proven to be useful for development of new therapeutic drugs and diagnostic techniques. To overcome the difficulties posed by their complex structure and folding, reduce undesired imm...Monoclonal antibodies (mAbs) have proven to be useful for development of new therapeutic drugs and diagnostic techniques. To overcome the difficulties posed by their complex structure and folding, reduce undesired immunogenicity, and improve pharmacoki- netic properties, a plethora of different Ab fragments have been developed. These include recombinant Fab and Fv segments that can display improved properties over those of the original mAbs upon which they are based. Antibody (Ab) fragments such as Fabs, scFvs, diabodies, and nanobodies, all contain the variable Ig domains responsible for binding to specific antigenic epitopes, allowing for specific targeting of pathological cells and/or molecules. These fragments can be easier to produce, purify and refold than a full Ab, and due to their smaller size they can be well absorbed and distributed into target tissues. However, the physicochemical and structural properties of the immunoglobulin (Ig) domain, upon which the folding and conformation of all these Ab fragments is based, can limit the stability of Ab-based drugs. The Ig domain is fairly sensitive to unfolding and aggregation when produced out of the structural context of an intact Ab molecule. When unfolded, Ab fragments may lose their specificity as well as establish non-native interactions leading to protein aggregation. Aggregated antibody fragments display altered pharmacokinetic and immunogenic properties that can augment their toxicity. Therefore, much effort has been placed in understanding the factors impacting the stability of Ig folding at two different levels: 1) intrinsically, by studying the effects of the amino acid sequence on Ig folding;2) extrinsically, by determining the environmental conditions that may influence the stability of Ig folding. In this review we will describe the structure of the Ig domain, and the factors that impact its stability, to set the context for the different approaches currently used to achieve stable recombinant Ig domains when pursuing the development of Ab fragment-based biotechnologies.展开更多
The conjugates of monoclonal antibodies and nanoparticles, including quantum-dot(QD), offer significant advantages over conventional fluorescent probes to image and study biological processes. The extend stability, in...The conjugates of monoclonal antibodies and nanoparticles, including quantum-dot(QD), offer significant advantages over conventional fluorescent probes to image and study biological processes. The extend stability, intense fluorescence and low toxicity of QDs are well suited for biological applications. In the present study, we used QD-conjugated anti-glucose-regulated protein 78(GRP78) antibody to examine the gene expression in prostate cancer cells under the unfolded protein response (UPR). QDs have got unique, simple and fast properties over current diagnostic techniques such as peroxidase-based immunohistochemical staining procedures, therefore the nanocarrier-conjugated antibody fragment has potential to become a new therapeutic tool for cancer diagnosis and treatment.展开更多
BACKGROUND: A single-chain antibody ( ScFv) phage display library was created by cloning antigen-binding re- gions of VH (variable domain) and VL gene repertoires as fusion proteins with a minor coat protein of filame...BACKGROUND: A single-chain antibody ( ScFv) phage display library was created by cloning antigen-binding re- gions of VH (variable domain) and VL gene repertoires as fusion proteins with a minor coat protein of filamentous phage, from which high affinity completely humanized ScFv against PreS1 of hepatitis B virus could be screened and characterized. METHODS: A combinatorial library of phage-display hu- man ScFv genes, which were derived from peripheral blood lymphocytes immunized by peptide PreS1 in vitro, was constructed. The library contained 7 × 108 clones. RESULTS: After 3 rounds panning, a high affinity (K = 10-7-10-8 mol/L) ScFv specific to PreS1 was obtained. Sequence analysis showed that the VH belonged to the VH4 family and Vλ to Vλ4. CONCLUSIONS: The described ScFv may provide a more satisfactory therapy. This application further illustrates that the method of in vitro antigen stimulation is expeditious for the source of human immune antibody library.展开更多
AIM: To construct the natural immune Fab antibody phage display libraries of colorectal cancer and to select antibodies related with colorectal cancer. METHODS: Extract total RNA from tissue of local cancer metastasis...AIM: To construct the natural immune Fab antibody phage display libraries of colorectal cancer and to select antibodies related with colorectal cancer. METHODS: Extract total RNA from tissue of local cancer metastasis lymph nodes of patients with colorectal cancer. RT-PCR was used to amplify the heavy chain Fd and light chain kappa and the amplification products were inserted successively into the vector pComb3 to construct the human libraries of Fab antibodies. They were then panned by phage display technology. By means of Dot immunoblotting and ELISA, the libraries were identified and the Fab phage antibodies binding with antigens of colorectal cancer were selected. RESULTS: The amplified fragments of Fd and kappa gained by RT-PCR were about 650 bp. Fd and kappa PCR products were subsequently inserted into the vector pComb3, resulting in a recombination rate of 40% and the volume of Fab phage display library reached 1.48 x 10(6).The libraries were enriched about 120-fold by 3 cycles of adsorption-elution-multiplication (panning). Dot immunoblotting showed Fab expressions on the phage libraries and ELISA showed 5 clones of Fab phage antibodies which had binding activities with antigens of colorectal cancer. CONCLUSION: The natural immune Fab antibody phage display libraries of colorectal cancer were constructed. They could be used to select the relative antibodies of colorectal cancer.展开更多
AIM: To establish a convenient immunoassay method based on recombinant antigen preS1(21-119aa) to detect anti-preS1 antibodies and evaluate the clinical significance of antibodies in hepatitis B. METHODS: The expressi...AIM: To establish a convenient immunoassay method based on recombinant antigen preS1(21-119aa) to detect anti-preS1 antibodies and evaluate the clinical significance of antibodies in hepatitis B. METHODS: The expression plasmid pET-28a-preS1 was constructed, and a large quantity of preS1(21-119aa) fragment of the large HBsAg protein was obtained. The preS1 fragment purified by Ni(2+)-IDA affinity chromatography was used as coated antigen to establish the indirect ELISA based on streptavidin-biotin system for detection of the anti-preS1 antibodies in sera from HBV-infected patients. For follow-up study, serial sera were collected during the clinical course of 21 HBV-infected patients and anti-preS1 antibodies, preS1 antigen, HBV-DNA and other serological HBV markers were analyzed. RESULTS: preS1(21-119aa) fragment was highly expressed from the plasmid pET-28a-preS1 in a soluble form in E.Coli (30mg.L(-1)), and easily purified to high purity over 90% by one step of Ni(2+)-IDA-sepharose 6B affinity chromatography. The purity and antigenicity of the purified preS1(21-119aa) protein was determined by 150g.L(-1) SDS-PAGE, Western blot and a direct ELISA. Recombinant preS1(21-119aa) protein was successfully applied in the immunoassay which could sensitively detect the anti-preS1 antibodies in serum specimens of acute or chronic hepatitis B patients. Results showed that more than half of 19 acute hepatitis B patients produced anti-preS1 antibodies during recovery of the disease, however, the response was only found in a few of chronic patients. In the clinical follow-up study of 11 patients with anti-preS1 positive serological profile, HBsAg and HBV-DNA clearance occurred in 6 of 10 acute hepatitis B patients in 5-6 months, and seroconversion of HBeAg and disappearance of HBV-DNA occurred in 1 chronic patients treated with lavumidine, a antiviral agent. CONCLUSION: The high-purity preS1(21-119aa) coated antigen was successfully prepared by gene expression and affinity chromatography. Using this antigen, a conveniently detective system of anti-preS1 antibodies in sera was established. Preliminarily clinical trial the occurrence of anti-preS1 antibodies in acute hepatitis B patients suggests the clearance of HBV from serum in a short-term time, and anti-preS1 positive in chronic patients means health improvement or recovery from the disease.展开更多
基金This study was supported by grants from the National Natural Science Foundation of China (No. 30572213)and Student Innovation Program of Shanxi Medical University (No.200404).
文摘BACKGROUND: Phage display technology has become a vital tool in studies aimed at identifying molecules binding to a specific target. It enables the rapid generation and selection of high affinity, fully human antibody product candidates to essentially any disease target appropriate for antibody therapy. In this study, we prepared the recombinant single-chain fragment variable ( ScFv) antibody to hepatitis B virus surface antigen (HBsAg) by the phage display technology for obtaining a virus-targeting mediator. METHODS: mRNA was isolated from B-lymphocytes from a healthy volunteer and converted into cDNA. The fragment variables of heavy and light chain were amplified separately and assembled into ScFv DNA with a specially constructed DNA linker by polymerase chain reaction. The ScFv DNA was ligated into the phagmid vector pCANT-AB5E and the ligated sample was transformed into competent E. coli TG1. The transformed cells were infected with M13K07 helper phage to form a human recombinant phage antibody library. The volume and recombinant rate of the library were evaluated by bacterial colony count and restriction analysis. After two rounds of panning with HBsAg. the phage clones displaying ScFv of the antibody were selected by enzyme-linked immunosorbant assay ( ELISA) from the enriched phage clones. The antigen binding affinity of the positive clone was detected by competition ELISA. HB2151 E. coli was transfected with the positive phage clone demonstrated by competition ELISA for production of a soluble form of the anti-HBsAg ScFv. ELISA assay was used to detect the antigen binding affinity of the soluble anti-HBsAg ScFv. Finally, the relative molecular mass of soluble anti-HBsAg ScFv was measured by SDS-PAGE. RESULTS: The variable heavy ( VH ) and variable light (VL) and ScFv DNAs were about 340bp, 320bp and 750bp, respectively. The volume of the library was up to 2 × 106 and 8 of 10 random clones were recombinants. Two phage clones could strongly compete with the original HBsAb for binding to HBsAg. Within 2 strong positive phage clones, the soluble anti-HBsAg ScFv from one clone was found to have the binding activity with HBsAg. SDS-PAGE showed that the relative molecular weight of soluble anti-HBsAg ScFv was 32 kDa. CONCLUSION: The anti-HBsAg ScFv successfully produced by phage antibody technology may be useful for broadening the scope of application of the antibody.
文摘AIM: To generate soluble single chain variable fragments (ScFv) of monoclonal antibody MC3 recognizing colorectal and gastric carcinomas. METHODS: mRNA was isolated from the hybridoma cell line producing MC3 and the DNAs encoding variable domains of heavy and light chains (VH and VL) of the antibody were amplified separately by RT-PCR and assembled into ScFv DNA with a linker DNA. The ScFv DNA was ligated into the phagemid vector pCANTAB5E and the ligated sample was transformed into E.coli TG1.The transformed cells were infected with M13KO7 helper phage to yield recombinant phages. After two rounds of panning with gastric carcinoma cell line AGS highly expressing MC3-binding antigen, the phage clones displaying ScFv fragments of the antibody were selected by ELISA. 4 phage clones showing strong signal in ELISA were used to infect E.coli HB2151 to express soluble ScFvs. The soluble ScFvs were identified by Dot blot and Western blot, and their antigen-binding activity was assayed by ELISA. The VH and VL DNAs of the ScFv DNA derived from phage clone 19 were sequenced. RESULTS: The VH,VL and ScFv DNAs were about 340 bp, 320 bp and 750 bp respectively. After two rounds of panning to the recombinant phages, 18 antigen-positive phage clones were selected from 30 preselected phage clones by ELISA. All the soluble ScFvs derived from the 4 out of the 18 antigen-positive phage clones were about M(r)32000 and concentrated in periplasmatic space under the given culture condition. The soluble ScFvs could bind the antigen, and they shared the same binding site with MC3. The sequences of the VH and VL DNAs of the MC3 ScFv showed that the variable antibody genes belonged to the IgG1 subgroup,kappa-type. CONCLUSION: The soluble ScFv of MC3 is successfully produced, which not only provides a possible novel targeting vehicle for in vivo and in vitro study on associated cancers, but also offers the antibody a stable genetic source.
基金the National Natural Science Foundation of China, No. 30500573
文摘BACKGROUND:Studies have shown that monoclonal or polyclonal antibody injections of amyloid β peptide are effective in removing amyloid β peptide overload in the brain. OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloidβpeptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide. DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006. MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library. METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a T easy plasmid for pT-scFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvAβ was cut by EcoRI and NotI endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvAβ expression vector, which was confirmed by gene sequencing. Linearized pPIC9K-scFvAβ was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5% methanol to express human single-chain fragment variable antibody specific to amyloid β peptide. MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was used to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris. RESULTS: Gene sequencing confirmed pPIC9K-scFvAβ orientation. Recombinants were obtained by linearized pPIC9K-scFvAβ transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size. CONCLUSION: The expression vector pPIC9K-scFvAβ was successfully constructed. Human single-chain fragment variable antibody specific to amyloid β peptide was recombinantly expressed in Pichia pastoris.
基金National Natural Science Foundation of China,No.39700175
文摘AIM To directly radiolabel an anti-hepatomamAb fragment HAb18 F(ab’)<sub>2</sub> with <sup>99m</sup>Tc bystannous-reduced method,and assess thestability,biodistribution and radioimmun-oimaging(RⅡ).METHODS Immunoreactive fraction wasdetermined according to Lindmo’s method.Ellman’s reagent was used to determine thenumber of thiols in the reduced F(ab’)<sub>2</sub>.Labelingefficiency and homogeneity were measured bypaper chromatography,sodium dodecylsulphatepolyacrylamide gel electrophoresis(SDS-PAGE)and autoradiography.Challenge assay involvedthe incubation of aliquots of labeled antibody inethylenediaminetetraacetate( EDTA )and L-cysteine(L-cys)solutions with different molarratio at 37℃ for 1h,respectively.Investigationsin vivo utilized nude mice bearing humanhepatocellular carcinoma(HHCC)xenograftswith gamma camera imaging and tissuebiodistribution studies at regular intervals.RESULTS The labeling procedure was finishedwithin 1.5 h compared with the'pretinning'method which would take at least 21h.In vitrostudies demonstrated that the radiolabeled mAbfragment was homogeneous and retained itsimmunoreactivity.Challenge studies indicatedthat <sup>99m</sup>Tc-labeled HAb18 F(ab’)<sub>2</sub> in EDTA is morestable than in L-cys.Imaging and biodistribution showed a significant tumor uptake at 24 h post-injection of <sup>99m</sup>Tc-labeled HAb18 F(ab’)<sub>2</sub>.Theblood,kidney,liver and tumor uptakes at 24hwere 0.56±0.09,56.45±11.36,1.43±0.27 and6.57±3.01(%ID/g),respectively.CONCLUSION <sup>99m</sup>Tc-HAb18 F(ab’)<sub>2</sub> conjugateprepared by this direct method appears to be aneffective way to detect hepatoma in nude micemodel.
基金Supported by the National Natural Science Foundation of China,No. 30271478
文摘AIM: To construct the expression vector of B3 (scdsFv)-SEA (D227A) and to identify its binding and cytotoxic ability to B3 antigen positive carcinoma cell lines.METHODS: This fusion protein was produced by a bacterial expression system in this study. It was expressed mainly in the inclusion body. The gene product was solubilized by guanidine hydrochloride, refolded by conventional dilution method, and purified using SP-sepharose cation chromatography.RESULTS: The expression vector B3 (scdsFv)-SEA-PETwas constructed, the expression product existed mainly in the inclusion body, the refolding product retained the binding ability of the single-chain antibody and had cytotoxic effect on HT-29 colon carcinoma cells. The stability assay showed that the resulting protein was stable at 37 ℃.CONCLUSION: This genetically engineered B3 (scdsFv)-SEA fusion protein has bifunction of tumor targeting and tumor cell killing and shows its promises as an effective reagent for tumor-targeted immunotherapy.
基金This work was supported by the grants from the National Key Research Project Funds,国家重点基础研究发展计划(973计划)
文摘Objective.Using monoclonal antibody (mAb) Fab′ fragment to develop mAb immunoconjugates for cancer. Methods.Fab′ fragment of mAb 3A5 was prepared by digestion of the antibody with pepsin and then reduced by dithiothreitol (DTT),while Fab′ fragment of mAb 3D6 was obtained by digestion of the antibody with ficin and subsequently reduced by β mercaptoethanol.The conjugation between Fab′ fragment and pingyangmycin (PYM),an antitumor antibiotic,was mediated by dextran T 40.Immunoreactivity of Fab′ PYM conjugates with cancer cells was determined by ELISA,and the cytotoxicity of those conjugates to cancer cells was determined by clonogenic assay.Antitumor effects of the Fab′ PYM conjugates were evaluated by subcutaneously transplanted tumors in mice. Results.The molecular weight of Fab′ fragment was approximately 53 kD,while the average molecular weight of Fab′ PYM conjugate was 170 kD.The Fab′ PYM conjugates showed immunoreactivity with antigen relevant cancer cells and selective cytotoxicity against target cells.Administered intravenously,Fab′ PYM conjugates were more effective against the growth of tumors in mice than free PYM and PYM conjugated with intact mAb. Conclusion.Fab′ PYM conjugate may be capable of targeting cancer cells and effectively inhibiting tumor growth,suggesting its therapeutic potential in cancer treatment.
文摘Antibodies are currently the fastest growing class of therapeutic proteins. When antibody fragments are included, there are over thirty-five antibody-based medicines approved for human therapy. Many more antibody and antibody-like fragments are being evaluated clinically. Production of antibody fragments can be efficient and their compact size can allows for better tissue extravasation into solid tumors than full antibodies. Unfortunately, a key limitation of antibody fragments for systemic use is their short half-life in circulation. Prolonging their circulation half-life can be accomplished clinically by the covalent conjugation of the antibody fragment to the water-soluble polymer, poly(ethylene glycol) (PEG). Many polymers and strategies are also being pursued to increase antibody fragment half-life.
基金Zhengzhou Municipal Science and Technology Projects of Development,China (No. 0910SGYS33377-1)Projects of Science and Technology Research of Shaanxi Province,China(No. 2007k09-06)the Social Development Project of Xi'an, China(No.YF07164)
文摘The development of single-chain Fv antibody (scFv) by recombinant gene expression is an important milestone for cancer therapy. Single-chain antibodies are reconstructed for cancer-targeted therapy to provide good penetration into tumor tissue and to improve their pharmacokinetics in vivo, offering a clinically valuable application. The relationship needs to be analyzed that there may be some variations between the structure and function of the fusion proteins, and the relationship between the structure and function of protein molecules was obtained through analyzing relevant literature at home and abroad as well as modeling analysis. Through our analysis of the interaction region between antibody and antigen, and of the binding sites for molecular conformation, it is clear that existing antibodies need to be modified at the DNA sequence level, enhancing the biological activity of the antibodies. Based on the view that bio-molecular computer models are closely integrated with biological experiments, a bio-molecular structure-activity relationship model can be established in terms of molecular conformation, physical and chemical properties and the biological activity of single-chain antibodies. Two enlightenments are obtained from our analysis. On one hand, the structure-activity relationship is clear for new immune molecules at the gene expression level. On the other hand, a single-chain antibody molecule can be designed and optimized for the cancer-oriented treatment. In this article, we provided the theoretical and experimental basis for the development of single-chain antibodies appropriate for retinoblastoma therapy.
基金Supported by the National Natural Science Foundation of China(No.30970608)the Applicative Technological Project of Bureau of Science and Technology of Changchun City, China(No.2009045)+1 种基金the Development and Planning Major Program of Jilin Provincial Science and Technology Department, China(No.20100948)the Innovation Method Fund of China (No.2008IM040800)
文摘In order to enhance the glutathione peroxidase(GPX) catalytic activity of the selenium-containing single-chain variable fragments(Se-scFv), a novel human scFv was designed on the basis of the structure of human antibody and optimized via bioinformatics methods such as homologous sequence analysis, three-dimensional(3D) model building, binding-site analysis and docking. The DNA sequence of the new human scFv was synthesized and cloned into the expression vector pET22b(+), then the scFv protein was expressed in soluble form in Escherichia coli BL21(DE3) and purified by Ni2+-immobilized metal affinity chromatography(IMAC). The serine residue of scFv in the active site was converted into selenocysteine(Sec) with the chemical modification method, thus, the human Se-scFv with GPX activity was obtained. The GPX activity of the Se-scFv protein was characterized. Compared with other Se-scFv, the new human Se-scFv showed similar efficiency for catalyzing the reduction of hydrogen peroxide by glutathione. It exhibited pH and temperature dependent catalytic activity and a typical ping-pong kinetic mechanism.
基金supported by the National Natural Science Foundation of China,No.30360100,30760234,30860260,81160373,81360458
文摘Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion pro-tein was expressed in Pichia pastoris. The afifnity of scFv-human serum albumin fusion protein to bind to acetylcholine receptor at the neuromuscular junction of human intercostal muscles was detected by immunolfuorescence staining. The ability of the fusion protein to block myas-thenia gravis patient sera binding to acetylcholine receptors and its stability in healthy serum were measured by competitive ELISA. The results showed that the inhibition rate was 2.0-77.4%, and the stability of fusion protein in static healthy sera was about 3 days. This approach suggests the scFv-human serum albumin is a potential candidate for speciifc immunosuppressive therapy of myasthenia gravis.
文摘Monoclonal antibodies (mAbs) have proven to be useful for development of new therapeutic drugs and diagnostic techniques. To overcome the difficulties posed by their complex structure and folding, reduce undesired immunogenicity, and improve pharmacoki- netic properties, a plethora of different Ab fragments have been developed. These include recombinant Fab and Fv segments that can display improved properties over those of the original mAbs upon which they are based. Antibody (Ab) fragments such as Fabs, scFvs, diabodies, and nanobodies, all contain the variable Ig domains responsible for binding to specific antigenic epitopes, allowing for specific targeting of pathological cells and/or molecules. These fragments can be easier to produce, purify and refold than a full Ab, and due to their smaller size they can be well absorbed and distributed into target tissues. However, the physicochemical and structural properties of the immunoglobulin (Ig) domain, upon which the folding and conformation of all these Ab fragments is based, can limit the stability of Ab-based drugs. The Ig domain is fairly sensitive to unfolding and aggregation when produced out of the structural context of an intact Ab molecule. When unfolded, Ab fragments may lose their specificity as well as establish non-native interactions leading to protein aggregation. Aggregated antibody fragments display altered pharmacokinetic and immunogenic properties that can augment their toxicity. Therefore, much effort has been placed in understanding the factors impacting the stability of Ig folding at two different levels: 1) intrinsically, by studying the effects of the amino acid sequence on Ig folding;2) extrinsically, by determining the environmental conditions that may influence the stability of Ig folding. In this review we will describe the structure of the Ig domain, and the factors that impact its stability, to set the context for the different approaches currently used to achieve stable recombinant Ig domains when pursuing the development of Ab fragment-based biotechnologies.
文摘The conjugates of monoclonal antibodies and nanoparticles, including quantum-dot(QD), offer significant advantages over conventional fluorescent probes to image and study biological processes. The extend stability, intense fluorescence and low toxicity of QDs are well suited for biological applications. In the present study, we used QD-conjugated anti-glucose-regulated protein 78(GRP78) antibody to examine the gene expression in prostate cancer cells under the unfolded protein response (UPR). QDs have got unique, simple and fast properties over current diagnostic techniques such as peroxidase-based immunohistochemical staining procedures, therefore the nanocarrier-conjugated antibody fragment has potential to become a new therapeutic tool for cancer diagnosis and treatment.
文摘BACKGROUND: A single-chain antibody ( ScFv) phage display library was created by cloning antigen-binding re- gions of VH (variable domain) and VL gene repertoires as fusion proteins with a minor coat protein of filamentous phage, from which high affinity completely humanized ScFv against PreS1 of hepatitis B virus could be screened and characterized. METHODS: A combinatorial library of phage-display hu- man ScFv genes, which were derived from peripheral blood lymphocytes immunized by peptide PreS1 in vitro, was constructed. The library contained 7 × 108 clones. RESULTS: After 3 rounds panning, a high affinity (K = 10-7-10-8 mol/L) ScFv specific to PreS1 was obtained. Sequence analysis showed that the VH belonged to the VH4 family and Vλ to Vλ4. CONCLUSIONS: The described ScFv may provide a more satisfactory therapy. This application further illustrates that the method of in vitro antigen stimulation is expeditious for the source of human immune antibody library.
基金Supported by the Natural Science Foundation of Guangdong Province,China, No. 980120the Foundation of Excellent Youth Teacher,China,2001
文摘AIM: To construct the natural immune Fab antibody phage display libraries of colorectal cancer and to select antibodies related with colorectal cancer. METHODS: Extract total RNA from tissue of local cancer metastasis lymph nodes of patients with colorectal cancer. RT-PCR was used to amplify the heavy chain Fd and light chain kappa and the amplification products were inserted successively into the vector pComb3 to construct the human libraries of Fab antibodies. They were then panned by phage display technology. By means of Dot immunoblotting and ELISA, the libraries were identified and the Fab phage antibodies binding with antigens of colorectal cancer were selected. RESULTS: The amplified fragments of Fd and kappa gained by RT-PCR were about 650 bp. Fd and kappa PCR products were subsequently inserted into the vector pComb3, resulting in a recombination rate of 40% and the volume of Fab phage display library reached 1.48 x 10(6).The libraries were enriched about 120-fold by 3 cycles of adsorption-elution-multiplication (panning). Dot immunoblotting showed Fab expressions on the phage libraries and ELISA showed 5 clones of Fab phage antibodies which had binding activities with antigens of colorectal cancer. CONCLUSION: The natural immune Fab antibody phage display libraries of colorectal cancer were constructed. They could be used to select the relative antibodies of colorectal cancer.
基金the grants No.KY951-Al-301 and No.KY95T-06-03 from the 9th Five Years Plan Key Research Programs of the Chinese Academy of Sciences.
文摘AIM: To establish a convenient immunoassay method based on recombinant antigen preS1(21-119aa) to detect anti-preS1 antibodies and evaluate the clinical significance of antibodies in hepatitis B. METHODS: The expression plasmid pET-28a-preS1 was constructed, and a large quantity of preS1(21-119aa) fragment of the large HBsAg protein was obtained. The preS1 fragment purified by Ni(2+)-IDA affinity chromatography was used as coated antigen to establish the indirect ELISA based on streptavidin-biotin system for detection of the anti-preS1 antibodies in sera from HBV-infected patients. For follow-up study, serial sera were collected during the clinical course of 21 HBV-infected patients and anti-preS1 antibodies, preS1 antigen, HBV-DNA and other serological HBV markers were analyzed. RESULTS: preS1(21-119aa) fragment was highly expressed from the plasmid pET-28a-preS1 in a soluble form in E.Coli (30mg.L(-1)), and easily purified to high purity over 90% by one step of Ni(2+)-IDA-sepharose 6B affinity chromatography. The purity and antigenicity of the purified preS1(21-119aa) protein was determined by 150g.L(-1) SDS-PAGE, Western blot and a direct ELISA. Recombinant preS1(21-119aa) protein was successfully applied in the immunoassay which could sensitively detect the anti-preS1 antibodies in serum specimens of acute or chronic hepatitis B patients. Results showed that more than half of 19 acute hepatitis B patients produced anti-preS1 antibodies during recovery of the disease, however, the response was only found in a few of chronic patients. In the clinical follow-up study of 11 patients with anti-preS1 positive serological profile, HBsAg and HBV-DNA clearance occurred in 6 of 10 acute hepatitis B patients in 5-6 months, and seroconversion of HBeAg and disappearance of HBV-DNA occurred in 1 chronic patients treated with lavumidine, a antiviral agent. CONCLUSION: The high-purity preS1(21-119aa) coated antigen was successfully prepared by gene expression and affinity chromatography. Using this antigen, a conveniently detective system of anti-preS1 antibodies in sera was established. Preliminarily clinical trial the occurrence of anti-preS1 antibodies in acute hepatitis B patients suggests the clearance of HBV from serum in a short-term time, and anti-preS1 positive in chronic patients means health improvement or recovery from the disease.