This study experimentally investigated two-phase acoustic streaming and droplet properties of aerosols, which were generated by a dental ultrasonic scaler. The velocity field of acoustic streaming was measured using p...This study experimentally investigated two-phase acoustic streaming and droplet properties of aerosols, which were generated by a dental ultrasonic scaler. The velocity field of acoustic streaming was measured using particle image velocimetry with the generated liquid droplets as tracers, and the shadowgraph technique was adopted to measure the droplet diameter. In the PIV measurement of the gas-liquid two-phase flow, the injection of oil smoke substantially suppressed the number of invalid vectors. The acoustic streaming of the ultrasonic scaler showed maximum velocity at a region away from the scaler tip, and the maximum velocity increased with an increase in the liquid flow rate. The droplets of the ultrasonic scaler were generated by capillary waves and had a diameter on the order of tens of micrometers. These droplets effectively enhanced the velocity of the acoustic streaming in the two-phase case compared to the single-phase case without the droplets.展开更多
Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.Howeve...Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).展开更多
A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm wa...A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.展开更多
This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhanc...This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.展开更多
Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices.However,the non-axisymmetric str...Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices.However,the non-axisymmetric structure of the impeller of this type of pumps generally induces flow asymmetry,oscillatory outflow during operations,and hydraulic imbalance.In severe cases,these effects can jeopardize the safety and stability of the overall pump.In the present study,such a problem is investigated in the framework of a Mixture multiphase flow method coupled with a RNG turbulence model used to determine the structure of the flow field and the related motion of transported particles.It is shown that under different inlet particle concentrations,the flow field in the pump exhibits periodic variations of the pressure.The volume fraction of solid particles at the trailing edge of the suction surface of the blade is the largest,and solid particles tend to be concentrated at the outer edge of the pump body.With a rise in import particle content,the pressure and volume fraction of particles in the sewage pump also increase;for a fixed inlet particle concentration,the pressure pulsation amplitude increases with an increase in the flow rate.In addition,under small flow conditions,as the inlet particle concentration increases,the flow field leaving the sewage pump diaphragm near the outlet of the volute becomes more turbulent,and even a secondary back-flow vortex appears.展开更多
The performance of multi-channel Compressive Sensing (CS)-based Direction-of-Arrival (DOA) estimation algorithm degrades when the gains between Radio Frequency (RF) channels are inconsistent, and when target angle inf...The performance of multi-channel Compressive Sensing (CS)-based Direction-of-Arrival (DOA) estimation algorithm degrades when the gains between Radio Frequency (RF) channels are inconsistent, and when target angle information mismatches with system sensing model. To solve these problems, a novel single-channel CS-based DOA estimation algorithm via sensing model optimization is proposed. Firstly, a DOA sparse sensing model using single-channel array considering the sensing model mismatch is established. Secondly, a new single-channel CS-based DOA estimation algorithm is presented. The basic idea behind the proposed algorithm is to iteratively solve two CS optimizations with respect to target angle information vector and sensing model quantization error vector, respectively. In addition, it avoids the loss of DOA estimation performance caused by the inconsistent gain between RF channels. Finally, simulation results are presented to verify the efficacy of the proposed algorithm.展开更多
The objective of this work was to study the use of standard equipment in amplitude and frequency tests of dental scaler tip according to ISO 18397.Four types of standard equipment:a laser displacement sensor,a microsc...The objective of this work was to study the use of standard equipment in amplitude and frequency tests of dental scaler tip according to ISO 18397.Four types of standard equipment:a laser displacement sensor,a microscope,a tachometer,and an ultrasonic frequency meter,were experimentally investigated to test a tip.The standard laser displacement sensor and the standard microscope were used to test the unloaded amplitude of the scaler tip.It was found that two types of standard equipment were able to measure the unloaded amplitude of the tip.The standard microscope was also employed for the loaded amplitude test.This test was performed by pressing the scaler tip with a load of 1 N,which was measured by a load cell set.The peak-to-peak amplitude found from the test was 116.7 m.The frequency test of the scaler tip was conducted using the standard laser displacement sensor,the tachometer and the ultrasonic frequency meter.All three types of standard equipment were found to be able to test the frequency of the tip without cooling liquid.Nevertheless,only the standard tachometer was capable of measuring the frequency of the tip with cooling liquid applied.展开更多
文摘This study experimentally investigated two-phase acoustic streaming and droplet properties of aerosols, which were generated by a dental ultrasonic scaler. The velocity field of acoustic streaming was measured using particle image velocimetry with the generated liquid droplets as tracers, and the shadowgraph technique was adopted to measure the droplet diameter. In the PIV measurement of the gas-liquid two-phase flow, the injection of oil smoke substantially suppressed the number of invalid vectors. The acoustic streaming of the ultrasonic scaler showed maximum velocity at a region away from the scaler tip, and the maximum velocity increased with an increase in the liquid flow rate. The droplets of the ultrasonic scaler were generated by capillary waves and had a diameter on the order of tens of micrometers. These droplets effectively enhanced the velocity of the acoustic streaming in the two-phase case compared to the single-phase case without the droplets.
基金National Natural Science Foundation of China(NSFC)(No.61671075)Major Program of National Natural Science Foundation of China(No.61631003)。
文摘Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).
文摘A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.
文摘This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.
基金the Welfare Technology Applied Research Project of Zhejiang Province(No.LGG21E090003)Open Research Subject of Research Center on Levee Safety Disaster Prevention,Ministry of Water Resources.
文摘Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices.However,the non-axisymmetric structure of the impeller of this type of pumps generally induces flow asymmetry,oscillatory outflow during operations,and hydraulic imbalance.In severe cases,these effects can jeopardize the safety and stability of the overall pump.In the present study,such a problem is investigated in the framework of a Mixture multiphase flow method coupled with a RNG turbulence model used to determine the structure of the flow field and the related motion of transported particles.It is shown that under different inlet particle concentrations,the flow field in the pump exhibits periodic variations of the pressure.The volume fraction of solid particles at the trailing edge of the suction surface of the blade is the largest,and solid particles tend to be concentrated at the outer edge of the pump body.With a rise in import particle content,the pressure and volume fraction of particles in the sewage pump also increase;for a fixed inlet particle concentration,the pressure pulsation amplitude increases with an increase in the flow rate.In addition,under small flow conditions,as the inlet particle concentration increases,the flow field leaving the sewage pump diaphragm near the outlet of the volute becomes more turbulent,and even a secondary back-flow vortex appears.
文摘The performance of multi-channel Compressive Sensing (CS)-based Direction-of-Arrival (DOA) estimation algorithm degrades when the gains between Radio Frequency (RF) channels are inconsistent, and when target angle information mismatches with system sensing model. To solve these problems, a novel single-channel CS-based DOA estimation algorithm via sensing model optimization is proposed. Firstly, a DOA sparse sensing model using single-channel array considering the sensing model mismatch is established. Secondly, a new single-channel CS-based DOA estimation algorithm is presented. The basic idea behind the proposed algorithm is to iteratively solve two CS optimizations with respect to target angle information vector and sensing model quantization error vector, respectively. In addition, it avoids the loss of DOA estimation performance caused by the inconsistent gain between RF channels. Finally, simulation results are presented to verify the efficacy of the proposed algorithm.
文摘The objective of this work was to study the use of standard equipment in amplitude and frequency tests of dental scaler tip according to ISO 18397.Four types of standard equipment:a laser displacement sensor,a microscope,a tachometer,and an ultrasonic frequency meter,were experimentally investigated to test a tip.The standard laser displacement sensor and the standard microscope were used to test the unloaded amplitude of the scaler tip.It was found that two types of standard equipment were able to measure the unloaded amplitude of the tip.The standard microscope was also employed for the loaded amplitude test.This test was performed by pressing the scaler tip with a load of 1 N,which was measured by a load cell set.The peak-to-peak amplitude found from the test was 116.7 m.The frequency test of the scaler tip was conducted using the standard laser displacement sensor,the tachometer and the ultrasonic frequency meter.All three types of standard equipment were found to be able to test the frequency of the tip without cooling liquid.Nevertheless,only the standard tachometer was capable of measuring the frequency of the tip with cooling liquid applied.