Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digital...Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.展开更多
This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection ...This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection and single-chip control. The monitoring system uses the tin oxide as the main material of N-type semiconductor gas sensors, be- cause it has good sensitive characteristics for the flammable and explosive gas ( such as methane, carbon monoxide). The QM-N5-semiconductor gas sensor is adopted to detect the output values of the resistance under the different gas con- centrations. The system, designedly, takes the AT89C51 digital chip as the core of the circuit processing hardware structure to analyze and judge the input values of the resistance, and then achieve the control and alarm for going beyond the limit of gas concentration. The gas concentration monitoring system has man), advantages including simple in struc- ture, fast response time, stable performance and low cost. Thus, it can be widely used to monitor gas concentration and provide early wamings in small and medium-sized coal mines.展开更多
A single-chip UHF RFID reader transceiver IC has been implemented in 0.18 μm SiGe BiCMOS technology. The chip includes all transceiver blocks as RX/TX RF front-end, RX/TX analog baseband, frequency synthesizer and I2...A single-chip UHF RFID reader transceiver IC has been implemented in 0.18 μm SiGe BiCMOS technology. The chip includes all transceiver blocks as RX/TX RF front-end, RX/TX analog baseband, frequency synthesizer and I2C with fully-compliant China 800/900 MHz RFID draft, ISO/IEC 18000-6C protocol and ETSI 302 208-1 local regulation. The normal mode receiver in the presence of -3 dBm self-jammer achieves -75 dBm 1% PER sensitivity. The linear class-A PA integrated in transmitter has 25 dBm OP1 dB output power for CW. The fully-integrated fractional-N fre-quency synthesizer is designed based on MASH 1-1-1 sigma-delta modulator and 1.8 GHz fundamental frequency LC-VCO for lower in-band and out-of-band phase noise. The measured phase noise is up to -106 dBc/Hz@200 kHz and -131 dBc/Hz@1 MHz offset from center frequency and the integrated RMS jitter from 10 kHz to 10 MHz is less than 1.6 pS. The chip dissipates 330 mA from 3.3 V power supply when transmitting 22.4 dBm CW signal and the PAE of linear PA is up to 26%. The chip die area is 16.8 mm2.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No. 59908001)Multidiscipline Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT. MD200030)
文摘Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.
基金supported by the program of Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Provincethe Hunan Province and Xiangtan City Natural Science Joint Foundation(No.09JJ8005)+1 种基金the Industrial Cultivation Program of Scientific and Technological Achievements in Higher Educational Institutions of Hunan Province(No.10CY008)the Technologies R & D of Hunan Province (No.2010CK3031)
文摘This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection and single-chip control. The monitoring system uses the tin oxide as the main material of N-type semiconductor gas sensors, be- cause it has good sensitive characteristics for the flammable and explosive gas ( such as methane, carbon monoxide). The QM-N5-semiconductor gas sensor is adopted to detect the output values of the resistance under the different gas con- centrations. The system, designedly, takes the AT89C51 digital chip as the core of the circuit processing hardware structure to analyze and judge the input values of the resistance, and then achieve the control and alarm for going beyond the limit of gas concentration. The gas concentration monitoring system has man), advantages including simple in struc- ture, fast response time, stable performance and low cost. Thus, it can be widely used to monitor gas concentration and provide early wamings in small and medium-sized coal mines.
文摘A single-chip UHF RFID reader transceiver IC has been implemented in 0.18 μm SiGe BiCMOS technology. The chip includes all transceiver blocks as RX/TX RF front-end, RX/TX analog baseband, frequency synthesizer and I2C with fully-compliant China 800/900 MHz RFID draft, ISO/IEC 18000-6C protocol and ETSI 302 208-1 local regulation. The normal mode receiver in the presence of -3 dBm self-jammer achieves -75 dBm 1% PER sensitivity. The linear class-A PA integrated in transmitter has 25 dBm OP1 dB output power for CW. The fully-integrated fractional-N fre-quency synthesizer is designed based on MASH 1-1-1 sigma-delta modulator and 1.8 GHz fundamental frequency LC-VCO for lower in-band and out-of-band phase noise. The measured phase noise is up to -106 dBc/Hz@200 kHz and -131 dBc/Hz@1 MHz offset from center frequency and the integrated RMS jitter from 10 kHz to 10 MHz is less than 1.6 pS. The chip dissipates 330 mA from 3.3 V power supply when transmitting 22.4 dBm CW signal and the PAE of linear PA is up to 26%. The chip die area is 16.8 mm2.