In the context of real-time fault-tolerant scheduling in multiprocessor systems, Primary-backup scheme plays an important role. A backup copy is always preferred to be executed as passive backup copy whenever possible...In the context of real-time fault-tolerant scheduling in multiprocessor systems, Primary-backup scheme plays an important role. A backup copy is always preferred to be executed as passive backup copy whenever possible because it can take the advantages of backup copy de-allocation technique and overloading technique to improve schedulability. In this paper, we propose a novel efficient fault-tolerant ratemonotonic best-fit algorithm efficient fault-tolerant rate-monotonic best-fit (ERMBF) based on multiprocessors systems to enhance the schedulability. Unlike existing scheduling algorithms that start scheduling tasks with only one processor. ERMBF pre-allocates a certain amount of processors before starting scheduling tasks, which enlarge the searching spaces for tasks. Besides, when a new processor is allocated, we reassign the task copies that have already been assigned to the existing processors in order to find a superior tasks assignment configuration. These two strategies are all aiming at making as many backup copies as possible to be executed as passive status. As a result, ERMBF can use fewer processors to schedule a set of tasks without losing real-time and fault-tolerant capabilities of the system. Simulation results reveal that ERMBF significantly improves the schedulability over existing, comparable algorithms in literature.展开更多
The high-speed computational performance is gained at the cost of huge hardware resource,which restricts the application of high-accuracy algorithms because of the limited hardware cost in practical use.To solve the p...The high-speed computational performance is gained at the cost of huge hardware resource,which restricts the application of high-accuracy algorithms because of the limited hardware cost in practical use.To solve the problem,a novel method for designing the field programmable gate array(FPGA)-based non-uniform rational B-spline(NURBS) interpolator and motion controller,which adopts the embedded multiprocessor technique,is proposed in this study.The hardware and software design for the multiprocessor,one of which is for NURBS interpolation and the other for position servo control,is presented.Performance analysis and experiments on an X-Y table are carried out,hardware cost as well as consuming time for interpolation and motion control is compared with the existing methods.The experimental and comparing results indicate that,compared with the existing methods,the proposed method can reduce the hardware cost by 97.5% using higher-accuracy interpolation algorithm within the period of 0.5 ms.A method which ensures the real-time performance and interpolation accuracy,and reduces the hardware cost significantly is proposed,and it’s practical in the use of industrial application.展开更多
To decrease the cost of exchanging load information among processors, a dynamic load-balancing (DLB) algorithm which adopts multieast tree technology is proposed. The muhieast tree construction rules are also propos...To decrease the cost of exchanging load information among processors, a dynamic load-balancing (DLB) algorithm which adopts multieast tree technology is proposed. The muhieast tree construction rules are also proposed to avoid wrongly transferred or redundant DLB messages due to the overlapping of multicast trees. The proposed DLB algorithm is distributed controlled, sender initiated and can help heavily loaded processors with complete distribution of redundant loads with minimum number of executions. Experiments were executed to compare the effects of the proposed DLB algorithm and other three ones, the results prove the effectivity and practicability of the proposed algorithm in dealing with great scale compute-intensive tasks.展开更多
In shared-memory bus-based multiprocessors, when the number of processors grows, the processors spend an increasing amount of time waiting for access to the bus (and shared memory). This contention reduces the perform...In shared-memory bus-based multiprocessors, when the number of processors grows, the processors spend an increasing amount of time waiting for access to the bus (and shared memory). This contention reduces the performance of processors and imposes a limitation of the number of processors that can be used efficiently in bus-based systems. Since the multi-processor’s performance depends upon many parameters which affect the performance in different ways, timed Petri nets are used to model shared-memory bus-based multiprocessors at the instruction execution level, and the developed models are used to study how the performance of processors changes with the number of processors in the system. The results illustrate very well the restriction on the number of processors imposed by the shared bus. All performance characteristics presented in this paper are obtained by discrete-event simulation of Petri net models.展开更多
P k |fix| C max problem is a new scheduling problem based on the multiprocessor parallel job, and it is proved to be NP hard problem when k ≥3. This paper focuses on the case of k =3. Some new observations and new te...P k |fix| C max problem is a new scheduling problem based on the multiprocessor parallel job, and it is proved to be NP hard problem when k ≥3. This paper focuses on the case of k =3. Some new observations and new techniques for P 3 |fix| C max problem are offered. The concept of semi normal schedulings is introduced, and a very simple linear time algorithm Semi normal Algorithm for constructing semi normal schedulings is developed. With the method of the classical Graham List Scheduling, a thorough analysis of the optimal scheduling on a special instance is provided, which shows that the algorithm is an approximation algorithm of ratio of 9/8 for any instance of P 3|fix| C max problem, and improves the previous best ratio of 7/6 by M.X.Goemans.展开更多
Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digital...Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.展开更多
The Fork-Join program consisting of K parallel tasks is a useful model for a large number of computing applications. When the parallel processor has multi-channels, later tasks may finish execution earlier than their ...The Fork-Join program consisting of K parallel tasks is a useful model for a large number of computing applications. When the parallel processor has multi-channels, later tasks may finish execution earlier than their earlier tasks and may join with tasks from other programs. This phenomenon is called exchangeable join (EJ), which introduces correlation to the task’s service time. In this work, we investigate the response time of multiprocessor systems with EJ with a new approach. We analyze two aspects of this kind of systems: exchangeable join (EJ) and the capacity constraint (CC). We prove that the system response time can be effectively reduced by EJ, while the reduced amount is constrained by the capacity of the multiprocessor. An upper bound model is constructed based on this analysis and a quick estimation algorithm is proposed. The approximation formula is verified by extensive simulation results, which show that the relative error of approximation is less than 5%.展开更多
This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection ...This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection and single-chip control. The monitoring system uses the tin oxide as the main material of N-type semiconductor gas sensors, be- cause it has good sensitive characteristics for the flammable and explosive gas ( such as methane, carbon monoxide). The QM-N5-semiconductor gas sensor is adopted to detect the output values of the resistance under the different gas con- centrations. The system, designedly, takes the AT89C51 digital chip as the core of the circuit processing hardware structure to analyze and judge the input values of the resistance, and then achieve the control and alarm for going beyond the limit of gas concentration. The gas concentration monitoring system has man), advantages including simple in struc- ture, fast response time, stable performance and low cost. Thus, it can be widely used to monitor gas concentration and provide early wamings in small and medium-sized coal mines.展开更多
This paper presents the mechanism of the bus arbitration in PI-MPS multiprocessor sys-tem,describes encode approach,arbiter timing states and uniqueness of master modular ininterconnection bus,and measures and analyse...This paper presents the mechanism of the bus arbitration in PI-MPS multiprocessor sys-tem,describes encode approach,arbiter timing states and uniqueness of master modular ininterconnection bus,and measures and analyses latency of bus arbitration as well.展开更多
The design of parallel algorithms is studied in this paper. These algorithms are applicable to shared memory MIMD machines In this paper, the emphasis is put on the methods for design of the efficient parallel algori...The design of parallel algorithms is studied in this paper. These algorithms are applicable to shared memory MIMD machines In this paper, the emphasis is put on the methods for design of the efficient parallel algorithms. The design of efficient parallel algorithms should be based on the following considerationst algorithm parallelism and the hardware-parallelism; granularity of the parallel algorithm, algorithm optimization according to the underling parallel machine. In this paper , these principles are applied to solve a model problem of the PDE. The speedup of the new method is high. The results were tested and evaluated on a shared memory MIMD machine. The practical results were agree with the predicted performance.展开更多
This paper considers the scheduling problem observed in chip sorting operation of LED manufacturing, where each lot (job) with release time have four operations to be processed on a set of processing stages without pr...This paper considers the scheduling problem observed in chip sorting operation of LED manufacturing, where each lot (job) with release time have four operations to be processed on a set of processing stages without pre-determined necessary route. Each stage has one and more identical sorting machines. The sorting machines scheduling problem can be treated as a four-stage multiprocessor open shop problem with dynamic job release, and the objective is minimizing the makespan in the paper. This problem is formulated into a mixed integer programming (MIP) model and empirically shows its computational intractability. Due to the computational intractability, a particle swarm optimization (PSO) algorithm is proposed. A series of computational experiments are conducted to evaluate the performance of the proposed PSO in comparison with exact solution on various small-size problem instances. The results show that the PSO algorithm could finds most optimal or better solutions in one second.展开更多
FMS is the basic and frontier technology of advanced manufacturing.Its critical compo-nent is FMS control system.Reconstructable fault-tolerant multiprocessor control system,YH-MCS,is the result of the research on the...FMS is the basic and frontier technology of advanced manufacturing.Its critical compo-nent is FMS control system.Reconstructable fault-tolerant multiprocessor control system,YH-MCS,is the result of the research on the high-performance and high-reliable FMS con-trol system.This paper describes its architecture,technology characteristics,academic valueand application potentiality.展开更多
Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on mu...Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on multiprocessor platforms with instance skipping was formulated based on the(m,k)-constrained model.A partitioned scheduling method SC-AD was proposed to solve the problem.SC-AD uses a derived sufficient schedulability condition to calculate the initial value of m for each sensor transaction.It then partitions the transactions among the processors in a balanced way.To further reduce the average relative invalid time of real-time data,SC-AD judiciously increases the values of m for transactions assigned to each processor.Experiment results show that SC-AD outperforms the baseline methods in terms of the average relative invalid time and the average valid ratio under different system workloads.展开更多
A single-chip UHF RFID reader transceiver IC has been implemented in 0.18 μm SiGe BiCMOS technology. The chip includes all transceiver blocks as RX/TX RF front-end, RX/TX analog baseband, frequency synthesizer and I2...A single-chip UHF RFID reader transceiver IC has been implemented in 0.18 μm SiGe BiCMOS technology. The chip includes all transceiver blocks as RX/TX RF front-end, RX/TX analog baseband, frequency synthesizer and I2C with fully-compliant China 800/900 MHz RFID draft, ISO/IEC 18000-6C protocol and ETSI 302 208-1 local regulation. The normal mode receiver in the presence of -3 dBm self-jammer achieves -75 dBm 1% PER sensitivity. The linear class-A PA integrated in transmitter has 25 dBm OP1 dB output power for CW. The fully-integrated fractional-N fre-quency synthesizer is designed based on MASH 1-1-1 sigma-delta modulator and 1.8 GHz fundamental frequency LC-VCO for lower in-band and out-of-band phase noise. The measured phase noise is up to -106 dBc/Hz@200 kHz and -131 dBc/Hz@1 MHz offset from center frequency and the integrated RMS jitter from 10 kHz to 10 MHz is less than 1.6 pS. The chip dissipates 330 mA from 3.3 V power supply when transmitting 22.4 dBm CW signal and the PAE of linear PA is up to 26%. The chip die area is 16.8 mm2.展开更多
基金Supported by the National Basic Reseach Program of China (973 Program 2004 CB318200)
文摘In the context of real-time fault-tolerant scheduling in multiprocessor systems, Primary-backup scheme plays an important role. A backup copy is always preferred to be executed as passive backup copy whenever possible because it can take the advantages of backup copy de-allocation technique and overloading technique to improve schedulability. In this paper, we propose a novel efficient fault-tolerant ratemonotonic best-fit algorithm efficient fault-tolerant rate-monotonic best-fit (ERMBF) based on multiprocessors systems to enhance the schedulability. Unlike existing scheduling algorithms that start scheduling tasks with only one processor. ERMBF pre-allocates a certain amount of processors before starting scheduling tasks, which enlarge the searching spaces for tasks. Besides, when a new processor is allocated, we reassign the task copies that have already been assigned to the existing processors in order to find a superior tasks assignment configuration. These two strategies are all aiming at making as many backup copies as possible to be executed as passive status. As a result, ERMBF can use fewer processors to schedule a set of tasks without losing real-time and fault-tolerant capabilities of the system. Simulation results reveal that ERMBF significantly improves the schedulability over existing, comparable algorithms in literature.
基金supported by National Key Basic Research Program of China(973 ProgramGrant No.2011CB706804)+1 种基金Shanghai Municipal Science and Technology Commission of China(Grant No.11QH1401400)Research Project of State Key Laboratory of Mechanical System & Vibration of China(Grant No.MSVMS201102)
文摘The high-speed computational performance is gained at the cost of huge hardware resource,which restricts the application of high-accuracy algorithms because of the limited hardware cost in practical use.To solve the problem,a novel method for designing the field programmable gate array(FPGA)-based non-uniform rational B-spline(NURBS) interpolator and motion controller,which adopts the embedded multiprocessor technique,is proposed in this study.The hardware and software design for the multiprocessor,one of which is for NURBS interpolation and the other for position servo control,is presented.Performance analysis and experiments on an X-Y table are carried out,hardware cost as well as consuming time for interpolation and motion control is compared with the existing methods.The experimental and comparing results indicate that,compared with the existing methods,the proposed method can reduce the hardware cost by 97.5% using higher-accuracy interpolation algorithm within the period of 0.5 ms.A method which ensures the real-time performance and interpolation accuracy,and reduces the hardware cost significantly is proposed,and it’s practical in the use of industrial application.
基金the National Natural Science Foundation of China(69973007)
文摘To decrease the cost of exchanging load information among processors, a dynamic load-balancing (DLB) algorithm which adopts multieast tree technology is proposed. The muhieast tree construction rules are also proposed to avoid wrongly transferred or redundant DLB messages due to the overlapping of multicast trees. The proposed DLB algorithm is distributed controlled, sender initiated and can help heavily loaded processors with complete distribution of redundant loads with minimum number of executions. Experiments were executed to compare the effects of the proposed DLB algorithm and other three ones, the results prove the effectivity and practicability of the proposed algorithm in dealing with great scale compute-intensive tasks.
文摘In shared-memory bus-based multiprocessors, when the number of processors grows, the processors spend an increasing amount of time waiting for access to the bus (and shared memory). This contention reduces the performance of processors and imposes a limitation of the number of processors that can be used efficiently in bus-based systems. Since the multi-processor’s performance depends upon many parameters which affect the performance in different ways, timed Petri nets are used to model shared-memory bus-based multiprocessors at the instruction execution level, and the developed models are used to study how the performance of processors changes with the number of processors in the system. The results illustrate very well the restriction on the number of processors imposed by the shared bus. All performance characteristics presented in this paper are obtained by discrete-event simulation of Petri net models.
文摘P k |fix| C max problem is a new scheduling problem based on the multiprocessor parallel job, and it is proved to be NP hard problem when k ≥3. This paper focuses on the case of k =3. Some new observations and new techniques for P 3 |fix| C max problem are offered. The concept of semi normal schedulings is introduced, and a very simple linear time algorithm Semi normal Algorithm for constructing semi normal schedulings is developed. With the method of the classical Graham List Scheduling, a thorough analysis of the optimal scheduling on a special instance is provided, which shows that the algorithm is an approximation algorithm of ratio of 9/8 for any instance of P 3|fix| C max problem, and improves the previous best ratio of 7/6 by M.X.Goemans.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 59908001)Multidiscipline Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT. MD200030)
文摘Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.
基金Project supported by the National Natural Science Foundation of0 China (Nos. 60274011 and 60574067), and the Program for NewCentury Excellent Talents in University (No. NCET-04-0094), China
文摘The Fork-Join program consisting of K parallel tasks is a useful model for a large number of computing applications. When the parallel processor has multi-channels, later tasks may finish execution earlier than their earlier tasks and may join with tasks from other programs. This phenomenon is called exchangeable join (EJ), which introduces correlation to the task’s service time. In this work, we investigate the response time of multiprocessor systems with EJ with a new approach. We analyze two aspects of this kind of systems: exchangeable join (EJ) and the capacity constraint (CC). We prove that the system response time can be effectively reduced by EJ, while the reduced amount is constrained by the capacity of the multiprocessor. An upper bound model is constructed based on this analysis and a quick estimation algorithm is proposed. The approximation formula is verified by extensive simulation results, which show that the relative error of approximation is less than 5%.
基金supported by the program of Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Provincethe Hunan Province and Xiangtan City Natural Science Joint Foundation(No.09JJ8005)+1 种基金the Industrial Cultivation Program of Scientific and Technological Achievements in Higher Educational Institutions of Hunan Province(No.10CY008)the Technologies R & D of Hunan Province (No.2010CK3031)
文摘This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection and single-chip control. The monitoring system uses the tin oxide as the main material of N-type semiconductor gas sensors, be- cause it has good sensitive characteristics for the flammable and explosive gas ( such as methane, carbon monoxide). The QM-N5-semiconductor gas sensor is adopted to detect the output values of the resistance under the different gas con- centrations. The system, designedly, takes the AT89C51 digital chip as the core of the circuit processing hardware structure to analyze and judge the input values of the resistance, and then achieve the control and alarm for going beyond the limit of gas concentration. The gas concentration monitoring system has man), advantages including simple in struc- ture, fast response time, stable performance and low cost. Thus, it can be widely used to monitor gas concentration and provide early wamings in small and medium-sized coal mines.
文摘This paper presents the mechanism of the bus arbitration in PI-MPS multiprocessor sys-tem,describes encode approach,arbiter timing states and uniqueness of master modular ininterconnection bus,and measures and analyses latency of bus arbitration as well.
文摘The design of parallel algorithms is studied in this paper. These algorithms are applicable to shared memory MIMD machines In this paper, the emphasis is put on the methods for design of the efficient parallel algorithms. The design of efficient parallel algorithms should be based on the following considerationst algorithm parallelism and the hardware-parallelism; granularity of the parallel algorithm, algorithm optimization according to the underling parallel machine. In this paper , these principles are applied to solve a model problem of the PDE. The speedup of the new method is high. The results were tested and evaluated on a shared memory MIMD machine. The practical results were agree with the predicted performance.
文摘This paper considers the scheduling problem observed in chip sorting operation of LED manufacturing, where each lot (job) with release time have four operations to be processed on a set of processing stages without pre-determined necessary route. Each stage has one and more identical sorting machines. The sorting machines scheduling problem can be treated as a four-stage multiprocessor open shop problem with dynamic job release, and the objective is minimizing the makespan in the paper. This problem is formulated into a mixed integer programming (MIP) model and empirically shows its computational intractability. Due to the computational intractability, a particle swarm optimization (PSO) algorithm is proposed. A series of computational experiments are conducted to evaluate the performance of the proposed PSO in comparison with exact solution on various small-size problem instances. The results show that the PSO algorithm could finds most optimal or better solutions in one second.
基金the Commission of science,Technology and Industry for National Defence
文摘FMS is the basic and frontier technology of advanced manufacturing.Its critical compo-nent is FMS control system.Reconstructable fault-tolerant multiprocessor control system,YH-MCS,is the result of the research on the high-performance and high-reliable FMS con-trol system.This paper describes its architecture,technology characteristics,academic valueand application potentiality.
基金Project(2020JJ4032)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on multiprocessor platforms with instance skipping was formulated based on the(m,k)-constrained model.A partitioned scheduling method SC-AD was proposed to solve the problem.SC-AD uses a derived sufficient schedulability condition to calculate the initial value of m for each sensor transaction.It then partitions the transactions among the processors in a balanced way.To further reduce the average relative invalid time of real-time data,SC-AD judiciously increases the values of m for transactions assigned to each processor.Experiment results show that SC-AD outperforms the baseline methods in terms of the average relative invalid time and the average valid ratio under different system workloads.
文摘A single-chip UHF RFID reader transceiver IC has been implemented in 0.18 μm SiGe BiCMOS technology. The chip includes all transceiver blocks as RX/TX RF front-end, RX/TX analog baseband, frequency synthesizer and I2C with fully-compliant China 800/900 MHz RFID draft, ISO/IEC 18000-6C protocol and ETSI 302 208-1 local regulation. The normal mode receiver in the presence of -3 dBm self-jammer achieves -75 dBm 1% PER sensitivity. The linear class-A PA integrated in transmitter has 25 dBm OP1 dB output power for CW. The fully-integrated fractional-N fre-quency synthesizer is designed based on MASH 1-1-1 sigma-delta modulator and 1.8 GHz fundamental frequency LC-VCO for lower in-band and out-of-band phase noise. The measured phase noise is up to -106 dBc/Hz@200 kHz and -131 dBc/Hz@1 MHz offset from center frequency and the integrated RMS jitter from 10 kHz to 10 MHz is less than 1.6 pS. The chip dissipates 330 mA from 3.3 V power supply when transmitting 22.4 dBm CW signal and the PAE of linear PA is up to 26%. The chip die area is 16.8 mm2.