A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction st...A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.展开更多
The present study aims at introducing a newly developed natural fiber called castor oil fiber,termed ricinus communis,as a possible reinforcement in tribo-composites.Unidirectional short castor oil fiber reinforced ep...The present study aims at introducing a newly developed natural fiber called castor oil fiber,termed ricinus communis,as a possible reinforcement in tribo-composites.Unidirectional short castor oil fiber reinforced epoxy resin composites of different fiber lengths with 40%volume fraction were fabricated using hand layup technique.Dry sliding wear tests were performed on a pin-on-disc tribometer based on full factorial design of experiments(DoE)at four fiber lengths(5,10,15,and 20 mm),three normal loads(15,30,and 45 N),and three sliding distances(1,000,2,000,and 3,000 m).The effect of individual parameters on the amount of wear,interfacial temperature,and coefficient of friction was studied using analysis of variance(ANOVA).The composite with 5 mm fiber length provided the best tribological properties than 10,15,and 20 mm fiber length composites.The worn surfaces were analyzed under scanning electron microscope.Also,the tribological behavior of the composites was predicted using regression,artificial neural network(ANN)-single hidden layer,and ANN-multi hidden layer models.The confirmatory test results show the reliability of predicted models.ANN with multi hidden layers are found to predict the tribological performance accurately and then followed by ANN with single hidden layer and regression model.展开更多
文摘A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.
文摘The present study aims at introducing a newly developed natural fiber called castor oil fiber,termed ricinus communis,as a possible reinforcement in tribo-composites.Unidirectional short castor oil fiber reinforced epoxy resin composites of different fiber lengths with 40%volume fraction were fabricated using hand layup technique.Dry sliding wear tests were performed on a pin-on-disc tribometer based on full factorial design of experiments(DoE)at four fiber lengths(5,10,15,and 20 mm),three normal loads(15,30,and 45 N),and three sliding distances(1,000,2,000,and 3,000 m).The effect of individual parameters on the amount of wear,interfacial temperature,and coefficient of friction was studied using analysis of variance(ANOVA).The composite with 5 mm fiber length provided the best tribological properties than 10,15,and 20 mm fiber length composites.The worn surfaces were analyzed under scanning electron microscope.Also,the tribological behavior of the composites was predicted using regression,artificial neural network(ANN)-single hidden layer,and ANN-multi hidden layer models.The confirmatory test results show the reliability of predicted models.ANN with multi hidden layers are found to predict the tribological performance accurately and then followed by ANN with single hidden layer and regression model.