We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave pr...We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation.The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions.Unlike most generalizations of the MsFEM in the literature,the ExpMsFEM does not rely on any partition of unity functions.In general,it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence.Indeed,there are online and offline parts in the function representation provided by the ExpMsFEM.The online part depends on the right-hand side locally and can be computed in parallel efficiently.The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix;they are all independent of the right-hand side,so the stiffness matrix can be used repeatedly in multi-query scenarios.展开更多
The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, whe...The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, where d( u ) denotes the degree of a vertex u in G. The paper mainly provides the upper and lower bounds of the exponential Randić index in quasi-tree graphs, and characterizes the extremal graphs when the bounds are achieved.展开更多
The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and th...The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.展开更多
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result i...This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.展开更多
In this paper, we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions. We prove the existence of a local weak solution and introduce a family of potentia...In this paper, we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions. We prove the existence of a local weak solution and introduce a family of potential wells and discuss the invariants and vacuum isolating behavior of solutions. Furthermore, we prove the global existence of solutions in both cases which are polynomial and exponential decay in the energy space respectively, and the asymptotic behavior of solutions for the cases of potential well family with 0 〈 E(0) 〈 d. At last we show that the energy will grow up as an exponential function as time goes to infinity, provided the initial data is large enough or E(0) 〈 0.展开更多
This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic a...This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generaliz...Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.展开更多
Fast wavelet multi-resolution analysis (wavelet MRA) provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't s...Fast wavelet multi-resolution analysis (wavelet MRA) provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't suitable for extracting harmonic components. The modified exponential time-frequency distribution ( MED) overcomes the problems of Wigner distribution( WD) ,can suppress cross-terms and cancel noise further more. MED provides high resolution in both time and frequency domains, so it can make out weak period impulse components fmm signal with mighty harmonic components. According to the 'time' behavior, together with 'frequency' behavior in one figure,the essential structure of a signal is revealed clearly. According to the analysis of algorithm and fault diagnosis example, the joint of wavelet MRA and MED is a powerful tool for fault diagnosis.展开更多
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th...This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.展开更多
With the passage of time, it has become important to investigate new methods for updating data to better fit the trends of the grey prediction model. The traditional GM(1,1) usually sets the grey action quantity as ...With the passage of time, it has become important to investigate new methods for updating data to better fit the trends of the grey prediction model. The traditional GM(1,1) usually sets the grey action quantity as a constant. Therefore, it cannot effectively fit the dynamic characteristics of the sequence, which results in the grey model having a low precision. The linear grey action quantity model cannot represent the index change law. This paper presents a grey action quantity model, the exponential optimization grey model(EOGM(1,1)), based on the exponential type of grey action quantity; it is constructed based on the exponential characteristics of the grey prediction model. The model can fully reflect the exponential characteristics of the simulation series with time. The exponential sequence has a higher fitting accuracy. The optimized result is verified using a numerical example for the fluctuating sequence and a case study for the index of the tertiary industry's GDP. The results show that the model improves the precision of the grey forecasting model and reduces the prediction error.展开更多
In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2 〈 0. It can be found tha...In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2 〈 0. It can be found that the temporal full width at half maximum and time-bandwidth product of exponential pulse monotonically increase with the increase of propagation distance and decrease with the increase of linear chirp C for C 〈 0.5, go through an initial decreasing stage near ζ= 1, then increase with the increase of propagation distance and linear chirp C for C 〉 0.5. The broadening of pulses with negative chirp is faster than that with positive chirp. The exponential pulse with linear chirp gradually evolves into a near-Gaussian pulse. The effect of nonlinear chirp on waveform of the pulse is much greater than that of linear chirp. The temporal waveform breaking of exponential pulse with nonlinear chirp is first observed in linear propagation. Furthermore, the expressions of the spectral width and time-bandwidth product of the exponential optical pulse with the frequency chirp are given by use of the numerical analysis method.展开更多
Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollo...Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lam6 solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.展开更多
In this paper, we have discussed a random censoring test with incomplete information, and proved that the maximum likelihood estimator(MLE) of the parameter based on the randomly censored data with incomplete informat...In this paper, we have discussed a random censoring test with incomplete information, and proved that the maximum likelihood estimator(MLE) of the parameter based on the randomly censored data with incomplete information in the case of the exponential distribution has the strong consistency.展开更多
The estimation of generalized exponential distribution based on progressive censoring with binomial removals is presented, where the number of units removed at each failure time follows a binomial distribution. Maximu...The estimation of generalized exponential distribution based on progressive censoring with binomial removals is presented, where the number of units removed at each failure time follows a binomial distribution. Maximum likelihood estimators of the parameters and their confidence intervals are derived. The expected time required to complete the life test under this censoring scheme is investigated. Finally, the numerical examples are given to illustrate some theoretical results by means of Monte-Carlo simulation.展开更多
Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure ri...Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure risks that there exist CIR stochastic volatility of stock return and Vasicek or CIR stochastic interest rate in the market. In the end, the result of the model in the paper is compared with those in other models, including BS model with numerical experiment. These results show that the double exponential jump-diffusion model with CIR-market structure risks is suitable for modelling the real-market changes and very useful.展开更多
For the problem of attitude control of a quad tilt rotor aircraft with unknown external disturbances, a class of control methods based on a new exponential fast nonsingular terminal sliding surface, a new fast reachin...For the problem of attitude control of a quad tilt rotor aircraft with unknown external disturbances, a class of control methods based on a new exponential fast nonsingular terminal sliding surface, a new fast reaching law, and a super twisting sliding mode disturbance observer is investigated. First, the new exponential nonsingular terminal sliding surface is designed by using the advantages of nonsingular terminal sliding mode finite time convergence and strong robustness. Second, to solve the problem of a long convergence time and the serious shaking of the traditional reaching law, a new fast reaching law model with characteristics of the second-order sliding mode is put forward. Third,considering the existence of complex disturbances, the super twisting sliding mode disturbance observer is used to estimate and compensate the composite disturbances online. Finally, compared with the traditional nonsingular fast sliding mode control, simulation results show that the proposed control scheme achieves a good control performance.展开更多
The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment,...The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment, using the addible characteristic ofinformation quantity and the principle of equivalence of information quantity, an entropy method ofdata information conversion is presented for the system consisted of identical exponential units.The basic conversion formulae of entropy method of unit test data are derived based on the principleof information quantity equivalence. The general models of entropy method synthesis assessment forsystem reliability approximate lower limits are established according to the fundamental principleof the unit reliability assessment. The applications of the entropy method are discussed by way ofpractical examples. Compared with the traditional methods, the entropy method is found to be validand practicable and the assessment results are very satisfactory.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-un...An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-uniform mass suction through the porous sheet is considered.Using Keller-box method the transformed equations are solved numerically.The results of skin friction coefficient,the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters.The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions.The ranges of suction where dual non-similar solution exists,become larger when values of unsteady parameter as well as nanoparticle volume fraction increase.So,due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field,the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less.Furthermore,the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions.Whereas,for stronger mass suction,the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution.The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction.So,for the unsteadiness and for the presence of nanoparticles,the flow separation is delayed to some extent.展开更多
基金part supported by the NSF Grants DMS-1912654 and DMS 2205590。
文摘We provide a concise review of the exponentially convergent multiscale finite element method(ExpMsFEM)for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation.The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions.Unlike most generalizations of the MsFEM in the literature,the ExpMsFEM does not rely on any partition of unity functions.In general,it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence.Indeed,there are online and offline parts in the function representation provided by the ExpMsFEM.The online part depends on the right-hand side locally and can be computed in parallel efficiently.The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix;they are all independent of the right-hand side,so the stiffness matrix can be used repeatedly in multi-query scenarios.
文摘The exponential Randić index has important applications in the fields of biology and chemistry. The exponential Randić index of a graph G is defined as the sum of the weights e 1 d( u )d( v ) of all edges uv of G, where d( u ) denotes the degree of a vertex u in G. The paper mainly provides the upper and lower bounds of the exponential Randić index in quasi-tree graphs, and characterizes the extremal graphs when the bounds are achieved.
基金The National Natural Science Foundation of China (No60574006)
文摘The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
文摘This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.
文摘In this paper, we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions. We prove the existence of a local weak solution and introduce a family of potential wells and discuss the invariants and vacuum isolating behavior of solutions. Furthermore, we prove the global existence of solutions in both cases which are polynomial and exponential decay in the energy space respectively, and the asymptotic behavior of solutions for the cases of potential well family with 0 〈 E(0) 〈 d. At last we show that the energy will grow up as an exponential function as time goes to infinity, provided the initial data is large enough or E(0) 〈 0.
文摘This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller.
基金Project Supported by the Natural Science Foundation of China (10471065)the Natural Science Foundation of Guangdong Province (04010474)
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of differential algebra, we investigate the problem of the forms of meromorphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.
文摘Fast wavelet multi-resolution analysis (wavelet MRA) provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't suitable for extracting harmonic components. The modified exponential time-frequency distribution ( MED) overcomes the problems of Wigner distribution( WD) ,can suppress cross-terms and cancel noise further more. MED provides high resolution in both time and frequency domains, so it can make out weak period impulse components fmm signal with mighty harmonic components. According to the 'time' behavior, together with 'frequency' behavior in one figure,the essential structure of a signal is revealed clearly. According to the analysis of algorithm and fault diagnosis example, the joint of wavelet MRA and MED is a powerful tool for fault diagnosis.
基金supported by the National Natural Science Foundation of China(7090104171171113)the Aeronautical Science Foundation of China(2014ZG52077)
文摘This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.
基金supported by the National Key Research and Development Program of China(2016YFC1402000)the National Science Foundation of China(41701593+2 种基金7137109871571157)the National Social Science Fund Major Project(14ZDB151)
文摘With the passage of time, it has become important to investigate new methods for updating data to better fit the trends of the grey prediction model. The traditional GM(1,1) usually sets the grey action quantity as a constant. Therefore, it cannot effectively fit the dynamic characteristics of the sequence, which results in the grey model having a low precision. The linear grey action quantity model cannot represent the index change law. This paper presents a grey action quantity model, the exponential optimization grey model(EOGM(1,1)), based on the exponential type of grey action quantity; it is constructed based on the exponential characteristics of the grey prediction model. The model can fully reflect the exponential characteristics of the simulation series with time. The exponential sequence has a higher fitting accuracy. The optimized result is verified using a numerical example for the fluctuating sequence and a case study for the index of the tertiary industry's GDP. The results show that the model improves the precision of the grey forecasting model and reduces the prediction error.
文摘In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2 〈 0. It can be found that the temporal full width at half maximum and time-bandwidth product of exponential pulse monotonically increase with the increase of propagation distance and decrease with the increase of linear chirp C for C 〈 0.5, go through an initial decreasing stage near ζ= 1, then increase with the increase of propagation distance and linear chirp C for C 〉 0.5. The broadening of pulses with negative chirp is faster than that with positive chirp. The exponential pulse with linear chirp gradually evolves into a near-Gaussian pulse. The effect of nonlinear chirp on waveform of the pulse is much greater than that of linear chirp. The temporal waveform breaking of exponential pulse with nonlinear chirp is first observed in linear propagation. Furthermore, the expressions of the spectral width and time-bandwidth product of the exponential optical pulse with the frequency chirp are given by use of the numerical analysis method.
基金supported by National Natural Science Foundation of China (Grant No. 50875230)
文摘Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lam6 solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.
文摘In this paper, we have discussed a random censoring test with incomplete information, and proved that the maximum likelihood estimator(MLE) of the parameter based on the randomly censored data with incomplete information in the case of the exponential distribution has the strong consistency.
基金supported by the National Natural Science Foundation of China(70471057)
文摘The estimation of generalized exponential distribution based on progressive censoring with binomial removals is presented, where the number of units removed at each failure time follows a binomial distribution. Maximum likelihood estimators of the parameters and their confidence intervals are derived. The expected time required to complete the life test under this censoring scheme is investigated. Finally, the numerical examples are given to illustrate some theoretical results by means of Monte-Carlo simulation.
基金Supported by the NNSF of China(40675023)the PHD Foundation of Guangxi Normal University.
文摘Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure risks that there exist CIR stochastic volatility of stock return and Vasicek or CIR stochastic interest rate in the market. In the end, the result of the model in the paper is compared with those in other models, including BS model with numerical experiment. These results show that the double exponential jump-diffusion model with CIR-market structure risks is suitable for modelling the real-market changes and very useful.
基金supported by the National Natural Science Foundation of China(11202162)
文摘For the problem of attitude control of a quad tilt rotor aircraft with unknown external disturbances, a class of control methods based on a new exponential fast nonsingular terminal sliding surface, a new fast reaching law, and a super twisting sliding mode disturbance observer is investigated. First, the new exponential nonsingular terminal sliding surface is designed by using the advantages of nonsingular terminal sliding mode finite time convergence and strong robustness. Second, to solve the problem of a long convergence time and the serious shaking of the traditional reaching law, a new fast reaching law model with characteristics of the second-order sliding mode is put forward. Third,considering the existence of complex disturbances, the super twisting sliding mode disturbance observer is used to estimate and compensate the composite disturbances online. Finally, compared with the traditional nonsingular fast sliding mode control, simulation results show that the proposed control scheme achieves a good control performance.
文摘The reliability assessment of unit-system near two levels is the mostimportant content in the reliability multi-level synthesis of complex systems. Introducing theinformation theory into system reliability assessment, using the addible characteristic ofinformation quantity and the principle of equivalence of information quantity, an entropy method ofdata information conversion is presented for the system consisted of identical exponential units.The basic conversion formulae of entropy method of unit test data are derived based on the principleof information quantity equivalence. The general models of entropy method synthesis assessment forsystem reliability approximate lower limits are established according to the fundamental principleof the unit reliability assessment. The applications of the entropy method are discussed by way ofpractical examples. Compared with the traditional methods, the entropy method is found to be validand practicable and the assessment results are very satisfactory.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
基金the National Board for Higher Mathematics (NBHM),Department of Atomic Energy,Government of India for the financial support in pursuing this workthe financial support from MOHE and the Research Management Center-UTM through FRGS and RUG vote number 4F109 and 02H80 for this research
文摘An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-uniform mass suction through the porous sheet is considered.Using Keller-box method the transformed equations are solved numerically.The results of skin friction coefficient,the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters.The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions.The ranges of suction where dual non-similar solution exists,become larger when values of unsteady parameter as well as nanoparticle volume fraction increase.So,due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field,the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less.Furthermore,the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions.Whereas,for stronger mass suction,the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution.The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction.So,for the unsteadiness and for the presence of nanoparticles,the flow separation is delayed to some extent.