Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.T...The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.展开更多
The traction characteristics of the grouser, cutting the simulative soil of deepsea sediment, with different tooth widths, tooth heights, and ground pressures are studied with traction characteristic test apparatus. A...The traction characteristics of the grouser, cutting the simulative soil of deepsea sediment, with different tooth widths, tooth heights, and ground pressures are studied with traction characteristic test apparatus. A traction-displacement model is obtained by combining the analysis of the cutting mechanism. The results show that the tractiondisplacement curves of grousers with different tooth widths, tooth heights, and ground pressures have the same changing trend, which matches the Wong traction model. Their sensitivity coefficient and shear modulus are slightly fluctuated. Therefore, the average values can be used as the traction model parameters. The maximum traction of the grouser with a two-side edge and a 10 mm tooth width increment changing with the tooth height and ground pressure can be determined according to the grousers with different tooth widths. By combining the traction model parameters, the traction-displacement curve of the grouser with a certain group values of tooth width, tooth height, and ground pressure can be predicted. Therefore, the slip of the mining machine can be prevented to improve the mining efficiency.展开更多
The traction capacity of the mining machine is greatly in?uenced by the traction rheological properties of the deep-sea sediments. The best simulative soil was prepared for substituting the deep-sea sediment based on ...The traction capacity of the mining machine is greatly in?uenced by the traction rheological properties of the deep-sea sediments. The best simulative soil was prepared for substituting the deep-sea sediment based on the deep-sea sediment collected from the Paci?c C-C mining area. Traction rheological properties of the simulative soil were studied by a home-made test apparatus. In order to accurately describe the traction rheological properties and determine traction rheological parameters, the Newtonian dashpot in Maxwell body of Burgers model was replaced by a self-similarity spring-dashpot fractance and a new rheological constitutive model was deduced by fractional derivative theory. The results show the simulative soil has obvious non-attenuate rheological properties. The transient creep and stable creep rate increase with the traction, but they decrease with ground pressure. The fractional derivative Burgers model are better in describing non-attenuate rheological properties of the simulative soil than the classical Burgers model. For the new traction rheological constitutive equation of the simulative soil, the traction rheological parameters can be obtained by ?tting the tested traction creep data with the traction creep constitutive equation. The ground contact length of track and walking velocity of the mining machine predicted by the traction rheological constitutive equation can be used to take full advantages of the maximum traction provided by the soil and safely improve mining effciency.展开更多
Acute pain,provoked generally after the activation of peripheral nociceptors,is an adaptive sensory function that alerts the individual to avoid noxious stimuli.However,uncontrolled acute pain has a maladaptive role i...Acute pain,provoked generally after the activation of peripheral nociceptors,is an adaptive sensory function that alerts the individual to avoid noxious stimuli.However,uncontrolled acute pain has a maladaptive role in sensory activity leading to development of a chronic pain state which persists even after the damage is resolved,or in some cases,in the absence of an initial local acute injury.Huge numbers of people suffer from visceral pain at least once during their life span,leading to substantial health care costs.Although studies reporting on the mechanism of visceral pain are accumulating,it is still not precisely understood.Therefore,this review aims to elucidate the mechanism of visceral pain through an evaluation of different animal models and their application to develop novel therapeutic approaches for treating visceral pain.To assess the nociceptive responses in viscera,several visceral pain models such as inflammatory,traction,stress and genetic models utilizing different methods of measurement have been devised.Among them,the inflammatory and traction models are widely used for studying the visceral pain mechanism of different disease conditions and post-operative surgery in humans and animals.A hapten,2,4,6-trinitrobenzene sulfonic acid(TNBS),has been extensively used as an inflammatory agent to induce visceral pain.The traction model seems to cause a strong pain stimulation and autonomic reaction and could thus be the most appropriate model for studying the underlying visceral pain mechanism and for probing the therapeutic efficacies of various anesthetic and analgesics for the treatment of visceral pain and hyperalgesia.展开更多
A computer model for the performance simulation of vehicles equipped with traction drive continuously variable transmission (CVT) is presented. The model integrates the traction drive CVT subsystem into an existing ...A computer model for the performance simulation of vehicles equipped with traction drive continuously variable transmission (CVT) is presented. The model integrates the traction drive CVT subsystem into an existing overall vehicle system. The characteristics of engine output torque are formulated using neural networks, and torque converter is modeled using lookup tables. Component inputs and outputs are coupled in the dynamic equations and interfaces in the powertrain system. The model simulation can provide evaluation of vehicle performance in drivability, fuel economy and emission levels for various drive ranges prior to the prototyping of the vehicle. As a design tool, the model assists engineers in understanding the effect ofpowertrain components on vehicle performance and making decisions in the selection of key design parameters. The model is implemented in the MATLAB/Simulink environment. The performance simulation of a test vehicle is included as a numerical example to illustrate the effectiveness of the model.展开更多
The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with c...The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.展开更多
Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider ...Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider locomotive wheel-rail adhesions,traction adhesion control,and locomotive dynamics.This paper has developed two models to fill this research gap.The first model uses a 2D locomotive model with 27 degrees of freedom and a simplified wheel-rail contact model.The second model uses a 3D locomotive model with 54 degrees of freedom and a fully detailed wheel-rail contact model.Both models were integrated into a longitudinal train dynamics model with the consideration of locomotive adhesion control.Energy consumption simulations using a conventional model(1D model)and the two new models(2D and 3D models)were conducted and compared.The results show that,due to the consideration of wheel-rail adhesion model and traction control in the 3D model,it reports less energy consumption than the 1D model.The maximum difference in energy consumption rate between the 3D model and the 1D model was 12.5%.Due to the consideration of multiple wheel-rail contact points in the 3D model,it reports higher energy consumption than the 2D model.An 8.6%maximum difference in energy consumption rate between the 3D model and the 1D model was reported during curve negotiation.展开更多
The objective of this paper is to develop a dynamic slip model for a shear crack under constant stress drop. This crack problem is formulated by a traction boundary integral equation (BIE) in the frequency domain an...The objective of this paper is to develop a dynamic slip model for a shear crack under constant stress drop. This crack problem is formulated by a traction boundary integral equation (BIE) in the frequency domain and then solved by the hyper-singular boundary element method as well as the regularization technique proposed in this paper. Based on the spectral integral form of the kernel function, the unbounded term can be isolated and extracted from the hyper-singular kernel function by using the method of subtracted and added back in wave number domain. Finally, based on the inverse transformation from the frequency domain to the time domain, the time histories of crack opening displacement under constant stress drop can be determined. Three rupture models (simultaneous rupture model, symmetric bilaterally-propagating model and unilaterally propagating model) with specified time histories of stress drop are considered in this paper. Even though these three models will cause the same final slip shapes because of the same constant stress drop, the associated slip time functions differ significantly from each other during the rupture process.展开更多
The Cranking Nilsson model is applied to calculate the single-particle energy eigenvalues and eigenfunctions of nuclei in a strongly deformed potential. Accordingly, The L. D. Energy, the Strutinsky inertia, the L. D....The Cranking Nilsson model is applied to calculate the single-particle energy eigenvalues and eigenfunctions of nuclei in a strongly deformed potential. Accordingly, The L. D. Energy, the Strutinsky inertia, the L. D. inertia, the volume conservation factor , the smoothed energy, the BCS energy, the G-value and the electric quadrupole moment of the five uranium isotopes: 230U, 232U, 234U, 236U and 238U are calculated as functions of the deformation parameter. Furthermore, the single-particle Schrodinger fluid is applied to calculate the rigid-body model, the cranking-model and the equilibrium-model moments of inertia of the five uranium isotopes. Moreover, the collective model is applied to calculate the rotational energies of these isotopes. The best potential and deformation parameters are also given.展开更多
针对动车组车载变压器油纸绝缘剩余寿命预测中单性能退化指标难以全面反映油纸绝缘退化过程的问题,考虑车载变压器油纸绝缘退化的个体差异性及两性能指标间的相关关系,提出了基于Copula函数的两性能指标相关退化的油纸绝缘剩余寿命预测...针对动车组车载变压器油纸绝缘剩余寿命预测中单性能退化指标难以全面反映油纸绝缘退化过程的问题,考虑车载变压器油纸绝缘退化的个体差异性及两性能指标间的相关关系,提出了基于Copula函数的两性能指标相关退化的油纸绝缘剩余寿命预测方法:采用具有随机效应的维纳过程建立油纸绝缘的两性能指标相关退化模型,基于赤池信息准则(Akaike Information Criterion, AIC)选择拟合效果更优的Copula函数来描述两性能指标间的相关关系,采用最大似然估计法估计初始时刻的模型参数,基于序列贝叶斯更新方法在线更新退化模型中的漂移系数,以实现油纸绝缘剩余寿命的在线预测。最后以加速热老化试验下油纸绝缘的聚合度和抗拉强度的退化数据进行实例验证。结果表明,两性能指标相关退化模型比单性能指标退化模型的剩余寿命预测值与实际值之间的平均绝对误差更小,预测的准确性更高,且随着模型参数不断更新,剩余寿命的预测值与实际值间的绝对误差在不断减小,预测结果的准确性在不断提升。展开更多
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60501019,10775139 and 60971073)
文摘The focusing and the stable transport of an intense elliptic sheet electron beam in a uniform magnetic field are investigated thoroughly by using the macroscopic cold-fluid model and the single-particle orbit theory.The results indicate that the envelopes and the tilted angles of the sheet electron beam obtained by the two theories are consistent.The single-particle orbit theory is more accurate due to its treatment of the space-charge fields in a rectangular drift tube.The macroscopic cold-fluid model describes the collective transport process in order to provide detailed information about the beam dynamics,such as beam shape,density,and velocity profile.The tilt of the elliptic sheet beam in a uniform magnetic field is carefully studied and demonstrated.The results presented in this paper provide two complete theories for systemically discussing the transport of the sheet beam and are useful for understanding and guiding the practical engineering design of electron optics systems in high power vacuum electronic devices.
基金Project supported by the National Natural Science Foundation of China(No.51274251)
文摘The traction characteristics of the grouser, cutting the simulative soil of deepsea sediment, with different tooth widths, tooth heights, and ground pressures are studied with traction characteristic test apparatus. A traction-displacement model is obtained by combining the analysis of the cutting mechanism. The results show that the tractiondisplacement curves of grousers with different tooth widths, tooth heights, and ground pressures have the same changing trend, which matches the Wong traction model. Their sensitivity coefficient and shear modulus are slightly fluctuated. Therefore, the average values can be used as the traction model parameters. The maximum traction of the grouser with a two-side edge and a 10 mm tooth width increment changing with the tooth height and ground pressure can be determined according to the grousers with different tooth widths. By combining the traction model parameters, the traction-displacement curve of the grouser with a certain group values of tooth width, tooth height, and ground pressure can be predicted. Therefore, the slip of the mining machine can be prevented to improve the mining efficiency.
基金Supported by the National Natural Science Foundation of China(Nos.11502226,51274251,51434002)the Key Research and Development Plan of Hunan Province(No.2017WK2032)+1 种基金the Research Foundation of Education Bureau of Hunan Province,China(Nos.15C1317,16C1542)the Hunan Provincial Innovation Foundation For Postgraduate(No.CX2017B342)
文摘The traction capacity of the mining machine is greatly in?uenced by the traction rheological properties of the deep-sea sediments. The best simulative soil was prepared for substituting the deep-sea sediment based on the deep-sea sediment collected from the Paci?c C-C mining area. Traction rheological properties of the simulative soil were studied by a home-made test apparatus. In order to accurately describe the traction rheological properties and determine traction rheological parameters, the Newtonian dashpot in Maxwell body of Burgers model was replaced by a self-similarity spring-dashpot fractance and a new rheological constitutive model was deduced by fractional derivative theory. The results show the simulative soil has obvious non-attenuate rheological properties. The transient creep and stable creep rate increase with the traction, but they decrease with ground pressure. The fractional derivative Burgers model are better in describing non-attenuate rheological properties of the simulative soil than the classical Burgers model. For the new traction rheological constitutive equation of the simulative soil, the traction rheological parameters can be obtained by ?tting the tested traction creep data with the traction creep constitutive equation. The ground contact length of track and walking velocity of the mining machine predicted by the traction rheological constitutive equation can be used to take full advantages of the maximum traction provided by the soil and safely improve mining effciency.
文摘Acute pain,provoked generally after the activation of peripheral nociceptors,is an adaptive sensory function that alerts the individual to avoid noxious stimuli.However,uncontrolled acute pain has a maladaptive role in sensory activity leading to development of a chronic pain state which persists even after the damage is resolved,or in some cases,in the absence of an initial local acute injury.Huge numbers of people suffer from visceral pain at least once during their life span,leading to substantial health care costs.Although studies reporting on the mechanism of visceral pain are accumulating,it is still not precisely understood.Therefore,this review aims to elucidate the mechanism of visceral pain through an evaluation of different animal models and their application to develop novel therapeutic approaches for treating visceral pain.To assess the nociceptive responses in viscera,several visceral pain models such as inflammatory,traction,stress and genetic models utilizing different methods of measurement have been devised.Among them,the inflammatory and traction models are widely used for studying the visceral pain mechanism of different disease conditions and post-operative surgery in humans and animals.A hapten,2,4,6-trinitrobenzene sulfonic acid(TNBS),has been extensively used as an inflammatory agent to induce visceral pain.The traction model seems to cause a strong pain stimulation and autonomic reaction and could thus be the most appropriate model for studying the underlying visceral pain mechanism and for probing the therapeutic efficacies of various anesthetic and analgesics for the treatment of visceral pain and hyperalgesia.
基金This project is supported by University Research Program of Ford MotorCompany and Visiting Scholar Program of State Key Laboratory on Me-chanical Transmission of Chongqing University, China.
文摘A computer model for the performance simulation of vehicles equipped with traction drive continuously variable transmission (CVT) is presented. The model integrates the traction drive CVT subsystem into an existing overall vehicle system. The characteristics of engine output torque are formulated using neural networks, and torque converter is modeled using lookup tables. Component inputs and outputs are coupled in the dynamic equations and interfaces in the powertrain system. The model simulation can provide evaluation of vehicle performance in drivability, fuel economy and emission levels for various drive ranges prior to the prototyping of the vehicle. As a design tool, the model assists engineers in understanding the effect ofpowertrain components on vehicle performance and making decisions in the selection of key design parameters. The model is implemented in the MATLAB/Simulink environment. The performance simulation of a test vehicle is included as a numerical example to illustrate the effectiveness of the model.
文摘The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.
基金The editing contribution of Mr.Tim McSweeney(Adjunct Research Fellow,Centre for Railway Engineering)is gratefully acknowledged.
文摘Railway train energy simulation is an important and popular research topic.Locomotive traction force simulations are a fundamental part of such research.Conventional energy calculation models are not able to consider locomotive wheel-rail adhesions,traction adhesion control,and locomotive dynamics.This paper has developed two models to fill this research gap.The first model uses a 2D locomotive model with 27 degrees of freedom and a simplified wheel-rail contact model.The second model uses a 3D locomotive model with 54 degrees of freedom and a fully detailed wheel-rail contact model.Both models were integrated into a longitudinal train dynamics model with the consideration of locomotive adhesion control.Energy consumption simulations using a conventional model(1D model)and the two new models(2D and 3D models)were conducted and compared.The results show that,due to the consideration of wheel-rail adhesion model and traction control in the 3D model,it reports less energy consumption than the 1D model.The maximum difference in energy consumption rate between the 3D model and the 1D model was 12.5%.Due to the consideration of multiple wheel-rail contact points in the 3D model,it reports higher energy consumption than the 2D model.An 8.6%maximum difference in energy consumption rate between the 3D model and the 1D model was reported during curve negotiation.
文摘The objective of this paper is to develop a dynamic slip model for a shear crack under constant stress drop. This crack problem is formulated by a traction boundary integral equation (BIE) in the frequency domain and then solved by the hyper-singular boundary element method as well as the regularization technique proposed in this paper. Based on the spectral integral form of the kernel function, the unbounded term can be isolated and extracted from the hyper-singular kernel function by using the method of subtracted and added back in wave number domain. Finally, based on the inverse transformation from the frequency domain to the time domain, the time histories of crack opening displacement under constant stress drop can be determined. Three rupture models (simultaneous rupture model, symmetric bilaterally-propagating model and unilaterally propagating model) with specified time histories of stress drop are considered in this paper. Even though these three models will cause the same final slip shapes because of the same constant stress drop, the associated slip time functions differ significantly from each other during the rupture process.
文摘The Cranking Nilsson model is applied to calculate the single-particle energy eigenvalues and eigenfunctions of nuclei in a strongly deformed potential. Accordingly, The L. D. Energy, the Strutinsky inertia, the L. D. inertia, the volume conservation factor , the smoothed energy, the BCS energy, the G-value and the electric quadrupole moment of the five uranium isotopes: 230U, 232U, 234U, 236U and 238U are calculated as functions of the deformation parameter. Furthermore, the single-particle Schrodinger fluid is applied to calculate the rigid-body model, the cranking-model and the equilibrium-model moments of inertia of the five uranium isotopes. Moreover, the collective model is applied to calculate the rotational energies of these isotopes. The best potential and deformation parameters are also given.
文摘针对动车组车载变压器油纸绝缘剩余寿命预测中单性能退化指标难以全面反映油纸绝缘退化过程的问题,考虑车载变压器油纸绝缘退化的个体差异性及两性能指标间的相关关系,提出了基于Copula函数的两性能指标相关退化的油纸绝缘剩余寿命预测方法:采用具有随机效应的维纳过程建立油纸绝缘的两性能指标相关退化模型,基于赤池信息准则(Akaike Information Criterion, AIC)选择拟合效果更优的Copula函数来描述两性能指标间的相关关系,采用最大似然估计法估计初始时刻的模型参数,基于序列贝叶斯更新方法在线更新退化模型中的漂移系数,以实现油纸绝缘剩余寿命的在线预测。最后以加速热老化试验下油纸绝缘的聚合度和抗拉强度的退化数据进行实例验证。结果表明,两性能指标相关退化模型比单性能指标退化模型的剩余寿命预测值与实际值之间的平均绝对误差更小,预测的准确性更高,且随着模型参数不断更新,剩余寿命的预测值与实际值间的绝对误差在不断减小,预测结果的准确性在不断提升。