Ramp-wave compression experiment to balance the high compression pressure generation in aluminum and x-ray blanking effect in transparent window is demonstrated with an imaging velocity interferometer system for any r...Ramp-wave compression experiment to balance the high compression pressure generation in aluminum and x-ray blanking effect in transparent window is demonstrated with an imaging velocity interferometer system for any reflector (VISAR) on ShenGuang-Ⅲprototype laser facility. The highest pressure is about 500 GPa after using the multilayer target design Al/Au/Al/LiF and -10^13 W//cm2 laser pulse illuminated on the planar Al target, which generates the spatial uniformity to 〈1% over 500 μm on the ablation layer. A 2-μm-thick Au layer is used to prevent the x-ray from preheating the planar ablation Al layer and window material LiF. The imaging VISAR system can be used to record the abrupt loss of the probe beam (λ= 532 nm) caused by absorption and reflection of 20-μm, 30-μm and 40-μm-thick Al, i.e., the blanking effect. Although there are slight shocks in the target, the peak pressure 500 GPa, which is the highest data up to now, is obtained with ramp-wave compression.展开更多
Discrete element modelling is commonly used for particle-scale modelling of granular or particulate materials. Developing a DEM model requires the determination of a number of micro-structural parameters, including th...Discrete element modelling is commonly used for particle-scale modelling of granular or particulate materials. Developing a DEM model requires the determination of a number of micro-structural parameters, including the particle contact stiffness and the particle-particle friction. These parameters cannot easily be measured in the laboratory or directly related to measurable, physical material parameters. Therefore, a calibration process is typically used to determine the values for use in simulations of physical systems. This paper focuses on how to define the particle stiffness for the discrete element modelling in order to perform realistic simulations of granular materials in the case of linear contact model. For that, laboratory tests and numerical discrete element modelling of triaxial compression tests have been carried out on two different non-cohesive soils i.e. poorly graded fine sand and gap graded coarse sand. The results of experimental tests are used to calibrate the numerical model. It is found that the numerical results are qualitatively and quantitatively in good agreement with the laboratory tests results. Moreover, the results show that the stress dependent of soil behaviour can be reproduced well by assigning the particle stiffness as a function of the particle size particularly for gap graded soil.展开更多
Nowadays, automobiles consume a large number of fossil fuels. However, the consumption of fossil fuels has brought many serious environmental problems, such as global warming, ozone layer depletion and fine particulat...Nowadays, automobiles consume a large number of fossil fuels. However, the consumption of fossil fuels has brought many serious environmental problems, such as global warming, ozone layer depletion and fine particulate matter. To avoid such environmental problems, renewable energy has been applied to automobiles. In this paper, an air-powered engine of a renewable energy vehicle is introduced. To lay a foundation for the optimization of compressed air engine (CAE), a physical model of compressed air engine (CAE) is established with cam which controls compressed air charge or discharge cylinder. To obtain performance of the CAE, a prototype CAE system is set up. The output torque, power and efficiency are obtained through experimental study. The results show that the prototype of CAE has a good economic performance under low speed and when the supply pressure is 2 MPa, the maximum output power is 1.92 kW;the maximum output torque is 56.55 N·m;and the maximum efficiency is 25%. This research can be referred to in the optimization of air-powered engine.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behavio...Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behaviors of the compression system, is applied to simulate the post stall behaviors digitally. The stall types, i.e. , rotating stall and surge, are determined. The variations of annular average parameters while the compression system goes into stall are also calculated exactly. The post stall behaviors are measured on the single stage compressor test rig. The measurement shows that rotating stall and surge appear under different conditions. On the basis of experiments, it is found that the post stall behaviors are influenced remarkably by some factors, such as rotation speeds, construction type and size of the exhaust duct. Good agreement between the simulation and experiments proves that this modeling technique is valid for simulating the post stall behaviors.展开更多
There is natural occurrence of pressure-induced solid bitumen, here referred to as “compression dynamometamorphic solid bitumen”. It differs in physical properties and chemical structure from thermal metamorphic sol...There is natural occurrence of pressure-induced solid bitumen, here referred to as “compression dynamometamorphic solid bitumen”. It differs in physical properties and chemical structure from thermal metamorphic solid bitumen. Under a high pressure and moderate temperature, the solid bitumen forms crystals and its reflectance rises rapidly with increasing crystallization. Accordingly, its reflectance can reach a very high value without having been exposed to a high level of thermal stress. Laboratory simulation confirms the formation of pressure-induced solid bitumen at moderate temperatures. The revelation of this new bitumen type is very helpful in the accurate maturity determination of carbonate organic matter.展开更多
The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of t...The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.展开更多
Satellite records show that the extent and thickness of sea ice in the Arctic Ocean have significantly decreased since the early 1970s.The prediction of sea ice is highly important,but accurate simulation of sea ice v...Satellite records show that the extent and thickness of sea ice in the Arctic Ocean have significantly decreased since the early 1970s.The prediction of sea ice is highly important,but accurate simulation of sea ice variations remains highly challenging.For improving model performance,sensitivity experiments were conducted using the coupled ocean and sea ice model(NEMO-LIM),and the simulation results were compared against satellite observations.Moreover,the contribution ratios of dynamic and thermodynamic processes to sea ice variations were analyzed.The results show that the performance of the model in reconstructing the spatial distribution of Arctic sea ice is highly sensitive to ice strength decay constant(C^(rhg)).By reducing the C^(rhg) constant,the sea ice compressive strength increases,leading to improved simulated sea ice states.The contribution of thermodynamic processes to sea ice melting was reduced due to less deformation and fracture of sea ice with increased compressive strength.Meanwhile,dynamic processes constrained more sea ice to the central Arctic Ocean and contributed to the increases in ice concentration,reducing the simulation bias in the central Arctic Ocean in summer.The root mean square error(RMSE)between modeled and the CryoSat-2/SMOS satellite observed ice thickness was reduced in the compressive strength-enhanced model solution.The ice thickness,especially of multiyear thick ice,was also reduced and matched with the satellite observation better in the freezing season.These provide an essential foundation on exploring the response of the marine ecosystem and biogeochemical cycling to sea ice changes.展开更多
Introduction Jiangmen Underground Neutrino Observation is going to build a huge polymethyl methacrylate(PMMA)detector to hold 20,000 tons of liquid scintillator to capture neutrinos in a 700-m underground cave.This PM...Introduction Jiangmen Underground Neutrino Observation is going to build a huge polymethyl methacrylate(PMMA)detector to hold 20,000 tons of liquid scintillator to capture neutrinos in a 700-m underground cave.This PMMA detector has a spherical shape with an inner diameter of 35.4 m and is supported by an outside stainless steel structure through 590 supporting nodes.The maximum compression force applied to these supporting nodes would be about 150 kN when the detector is running.Method This paper focuses on the design and validation of the PMMA supporting node and compares the effects of two gaskets(round gasket and ring gasket)on the supporting node stress and ultimate compression load.An innovative PMMA supporting node structure is first proposed,and a 1/4 symmetric model with the material nonlinearity and frictional contact boundary is established in the finite element analysis(FEA).Results The FEA results show that the principal stress of the structure is less than 3.5 MPa and the Mises stress is less than 5.5 MPa.The stress and deformation at the groove of the supporting node using the ring gasket are smaller than that using the round gasket.The compression experiments of the supporting node using two types of gaskets were conducted to study the effect of gaskets on the ultimate compression load of supporting node.The ultimate compression load of the supporting node with ring gasket is larger than 900 kN,which is six times of design load.In a comparison of experimental results with FEA,the maximum difference is 15.78%,demonstrating the validity of FEA results.Through the material test of PMMA and experiment of the PMMA supporting node,it is known that PMMA is a brittle material and it is very sensitive to sharp corner defects that should be avoided in the design of PMMA structure.展开更多
The compressive experiments of two kinds of ceramic foams were completed. The results show that the behavior of ceramic foams made by organic filling method is anisotropic. The stress-strain responses of ceramic foams...The compressive experiments of two kinds of ceramic foams were completed. The results show that the behavior of ceramic foams made by organic filling method is anisotropic. The stress-strain responses of ceramic foams made by sponge-replication show isotropy and strain rate dependence. The struts brittle breaking of net structure of this ceramic foam arises at the weakest defects of framework or at the part of framework, which causes the initiation and expanding of cracks. The compressive strength of ceramic foam is dependent on the strut size and relative density of foams.展开更多
Objective To observe the clinical efficacy and safety of WenYang HuoXue Washing Prescription (WYHX) in the treatment of upper limb edema after breast cancer surgery. Methods: Seventy-eight patients with upper ext...Objective To observe the clinical efficacy and safety of WenYang HuoXue Washing Prescription (WYHX) in the treatment of upper limb edema after breast cancer surgery. Methods: Seventy-eight patients with upper extremity edema after operation of breast cancer with Yin Syndrome were given wet compress with prescription and nursing guidance. The symptom score of affected extremity was observed before and 14 days after treatment, and the total effective rate was evaluated. Results: Twenty-three cases were markedly effective, 41 cases were effective and 14 cases were Invalid. The total effective rate was 82.1%. There was no significant difference between the two groups according to stage I and stage II of edema (P 〉 0.05). Conclusion: WYHX can effectively improve the discomfort symptoms of upper limb edema and cold after breast cancer surgery, and is worthy of clinical application.展开更多
为分析排气管内压力波动对发动机二冲程制动功率的影响,以某重型柴油机为研究对象,利用GT-Power建立发动机二冲程制动一维模型,通过修改排气型线开展排气道压力波动对制动性能影响的研究。结果表明:第二次减压制动(the second compressi...为分析排气管内压力波动对发动机二冲程制动功率的影响,以某重型柴油机为研究对象,利用GT-Power建立发动机二冲程制动一维模型,通过修改排气型线开展排气道压力波动对制动性能影响的研究。结果表明:第二次减压制动(the second compression release braking,2nd CRB)相位开启时的压力波动会影响到其他气缸的排气回流,进而影响发动机的制动功率。进一步对排气管进行三维流场计算,证明了其他气缸2nd CRB相位排气门开启时的压力波传递对排气回流阶段排气回流的影响。最后通过试验设计(design of experiment,DoE),结合响应面拟合和粒子群算法对排气管几何尺寸进行优化,优化后该柴油机二冲程减压制动模式下2100 r/min工况的最大制动功率可达到395.08 kW。展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11305160
文摘Ramp-wave compression experiment to balance the high compression pressure generation in aluminum and x-ray blanking effect in transparent window is demonstrated with an imaging velocity interferometer system for any reflector (VISAR) on ShenGuang-Ⅲprototype laser facility. The highest pressure is about 500 GPa after using the multilayer target design Al/Au/Al/LiF and -10^13 W//cm2 laser pulse illuminated on the planar Al target, which generates the spatial uniformity to 〈1% over 500 μm on the ablation layer. A 2-μm-thick Au layer is used to prevent the x-ray from preheating the planar ablation Al layer and window material LiF. The imaging VISAR system can be used to record the abrupt loss of the probe beam (λ= 532 nm) caused by absorption and reflection of 20-μm, 30-μm and 40-μm-thick Al, i.e., the blanking effect. Although there are slight shocks in the target, the peak pressure 500 GPa, which is the highest data up to now, is obtained with ramp-wave compression.
文摘Discrete element modelling is commonly used for particle-scale modelling of granular or particulate materials. Developing a DEM model requires the determination of a number of micro-structural parameters, including the particle contact stiffness and the particle-particle friction. These parameters cannot easily be measured in the laboratory or directly related to measurable, physical material parameters. Therefore, a calibration process is typically used to determine the values for use in simulations of physical systems. This paper focuses on how to define the particle stiffness for the discrete element modelling in order to perform realistic simulations of granular materials in the case of linear contact model. For that, laboratory tests and numerical discrete element modelling of triaxial compression tests have been carried out on two different non-cohesive soils i.e. poorly graded fine sand and gap graded coarse sand. The results of experimental tests are used to calibrate the numerical model. It is found that the numerical results are qualitatively and quantitatively in good agreement with the laboratory tests results. Moreover, the results show that the stress dependent of soil behaviour can be reproduced well by assigning the particle stiffness as a function of the particle size particularly for gap graded soil.
文摘Nowadays, automobiles consume a large number of fossil fuels. However, the consumption of fossil fuels has brought many serious environmental problems, such as global warming, ozone layer depletion and fine particulate matter. To avoid such environmental problems, renewable energy has been applied to automobiles. In this paper, an air-powered engine of a renewable energy vehicle is introduced. To lay a foundation for the optimization of compressed air engine (CAE), a physical model of compressed air engine (CAE) is established with cam which controls compressed air charge or discharge cylinder. To obtain performance of the CAE, a prototype CAE system is set up. The output torque, power and efficiency are obtained through experimental study. The results show that the prototype of CAE has a good economic performance under low speed and when the supply pressure is 2 MPa, the maximum output power is 1.92 kW;the maximum output torque is 56.55 N·m;and the maximum efficiency is 25%. This research can be referred to in the optimization of air-powered engine.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
文摘Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behaviors of the compression system, is applied to simulate the post stall behaviors digitally. The stall types, i.e. , rotating stall and surge, are determined. The variations of annular average parameters while the compression system goes into stall are also calculated exactly. The post stall behaviors are measured on the single stage compressor test rig. The measurement shows that rotating stall and surge appear under different conditions. On the basis of experiments, it is found that the post stall behaviors are influenced remarkably by some factors, such as rotation speeds, construction type and size of the exhaust duct. Good agreement between the simulation and experiments proves that this modeling technique is valid for simulating the post stall behaviors.
基金Supported by Chinese Key Project of Science and Technology!(96-111-03-0 4)
文摘There is natural occurrence of pressure-induced solid bitumen, here referred to as “compression dynamometamorphic solid bitumen”. It differs in physical properties and chemical structure from thermal metamorphic solid bitumen. Under a high pressure and moderate temperature, the solid bitumen forms crystals and its reflectance rises rapidly with increasing crystallization. Accordingly, its reflectance can reach a very high value without having been exposed to a high level of thermal stress. Laboratory simulation confirms the formation of pressure-induced solid bitumen at moderate temperatures. The revelation of this new bitumen type is very helpful in the accurate maturity determination of carbonate organic matter.
基金financially supported by the National Key R&D Program of China (2021YFA1003501)the National Natural Science Foundation of China (No.U1906233,11732004)the Fundamental Research Funds for the Central Universities (DUT20ZD213,DUT20LAB308)。
文摘The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.
基金Supported by the National Natural Science Foundation of China(Nos.41630969,41941013,41806225)the Tianjin Municipal Natural Science Foundation(No.20JCQNJC01290)。
文摘Satellite records show that the extent and thickness of sea ice in the Arctic Ocean have significantly decreased since the early 1970s.The prediction of sea ice is highly important,but accurate simulation of sea ice variations remains highly challenging.For improving model performance,sensitivity experiments were conducted using the coupled ocean and sea ice model(NEMO-LIM),and the simulation results were compared against satellite observations.Moreover,the contribution ratios of dynamic and thermodynamic processes to sea ice variations were analyzed.The results show that the performance of the model in reconstructing the spatial distribution of Arctic sea ice is highly sensitive to ice strength decay constant(C^(rhg)).By reducing the C^(rhg) constant,the sea ice compressive strength increases,leading to improved simulated sea ice states.The contribution of thermodynamic processes to sea ice melting was reduced due to less deformation and fracture of sea ice with increased compressive strength.Meanwhile,dynamic processes constrained more sea ice to the central Arctic Ocean and contributed to the increases in ice concentration,reducing the simulation bias in the central Arctic Ocean in summer.The root mean square error(RMSE)between modeled and the CryoSat-2/SMOS satellite observed ice thickness was reduced in the compressive strength-enhanced model solution.The ice thickness,especially of multiyear thick ice,was also reduced and matched with the satellite observation better in the freezing season.These provide an essential foundation on exploring the response of the marine ecosystem and biogeochemical cycling to sea ice changes.
基金supported by the Strate-gic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA10010200)the Youth Innovation Promotion Associa-tion of the Chinese Academy of Sciences(Grant No.292020000087)Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515012216)
文摘Introduction Jiangmen Underground Neutrino Observation is going to build a huge polymethyl methacrylate(PMMA)detector to hold 20,000 tons of liquid scintillator to capture neutrinos in a 700-m underground cave.This PMMA detector has a spherical shape with an inner diameter of 35.4 m and is supported by an outside stainless steel structure through 590 supporting nodes.The maximum compression force applied to these supporting nodes would be about 150 kN when the detector is running.Method This paper focuses on the design and validation of the PMMA supporting node and compares the effects of two gaskets(round gasket and ring gasket)on the supporting node stress and ultimate compression load.An innovative PMMA supporting node structure is first proposed,and a 1/4 symmetric model with the material nonlinearity and frictional contact boundary is established in the finite element analysis(FEA).Results The FEA results show that the principal stress of the structure is less than 3.5 MPa and the Mises stress is less than 5.5 MPa.The stress and deformation at the groove of the supporting node using the ring gasket are smaller than that using the round gasket.The compression experiments of the supporting node using two types of gaskets were conducted to study the effect of gaskets on the ultimate compression load of supporting node.The ultimate compression load of the supporting node with ring gasket is larger than 900 kN,which is six times of design load.In a comparison of experimental results with FEA,the maximum difference is 15.78%,demonstrating the validity of FEA results.Through the material test of PMMA and experiment of the PMMA supporting node,it is known that PMMA is a brittle material and it is very sensitive to sharp corner defects that should be avoided in the design of PMMA structure.
文摘The compressive experiments of two kinds of ceramic foams were completed. The results show that the behavior of ceramic foams made by organic filling method is anisotropic. The stress-strain responses of ceramic foams made by sponge-replication show isotropy and strain rate dependence. The struts brittle breaking of net structure of this ceramic foam arises at the weakest defects of framework or at the part of framework, which causes the initiation and expanding of cracks. The compressive strength of ceramic foam is dependent on the strut size and relative density of foams.
文摘Objective To observe the clinical efficacy and safety of WenYang HuoXue Washing Prescription (WYHX) in the treatment of upper limb edema after breast cancer surgery. Methods: Seventy-eight patients with upper extremity edema after operation of breast cancer with Yin Syndrome were given wet compress with prescription and nursing guidance. The symptom score of affected extremity was observed before and 14 days after treatment, and the total effective rate was evaluated. Results: Twenty-three cases were markedly effective, 41 cases were effective and 14 cases were Invalid. The total effective rate was 82.1%. There was no significant difference between the two groups according to stage I and stage II of edema (P 〉 0.05). Conclusion: WYHX can effectively improve the discomfort symptoms of upper limb edema and cold after breast cancer surgery, and is worthy of clinical application.