Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were estab...Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were established to analyze the dynamical phenomenon in the single phase H-bridge inverter. The dynamical characteristics of the single phase H- bridge inverter, such as time domain waveform diagram, bifurcation diagram, and folding map, were obtained by using the numerical calculation when the circuit parameters varied in specific range. Moreover, the simulation results were obtained by using the OrCAD-PSpice software to validate the numerical calculation. Both the numerical calculation and the circuit simulation show that the symmetrical dynamical phenomenon occurs in the single phase H-bridge inverter controlled by the peak current or the valley current.展开更多
The new 6-switch single-phase 5-level current-source inverter proposed in this paper was developed by properly simplifying the traditional 8-switch single-phase 5-level current-source inverter, and its operational pri...The new 6-switch single-phase 5-level current-source inverter proposed in this paper was developed by properly simplifying the traditional 8-switch single-phase 5-level current-source inverter, and its operational principle was analyzed. Just like the problem of voltage-unbalance between different levels existing in voltage-source multilevel inverters, a similar problem of current-unbalance between different levels whether for the 8-switch single-phase 5-level current-source inverter, or for the new 6-switch 5-level current-source inverter also exists. A simple current-balance control method via DC current feedback is presented here to implement the current-balance control between different levels. And to reduce the output current harmonics, PWM control technique was used. Simulation and experimental results showed that this new 6-switch topology operates correctly and that the balance-inductor can almost equally distribute the total DC current.展开更多
A vector control based on the extended equivalent circuit and virtual circuits is proposed for the single-phase inverter.By the extended circuit,the other two phase voltages can be extended by the output voltage of th...A vector control based on the extended equivalent circuit and virtual circuits is proposed for the single-phase inverter.By the extended circuit,the other two phase voltages can be extended by the output voltage of the single-phase inverter so as to construct the voltage vector.The voltage outer-loop is to control the voltage vector in dq coordinate system,and the output voltage can track the target value without deviation in steady state.By designing the virtual circuit,the voltage inner-loop can achieve approximate decoupling and improve the dynamic response under the changeable load.Compared with the traditional dual closed-loop control,the proposed dual closed-loop control scheme only needs to detect and control the voltage without the current.It not only can achieve good control effect,but also reduce the complexity of the hardware.Finally,the simulation and experimental results show that the single-phase inverter has good static and dynamic characteristics regardless of stable load or changeable load.展开更多
Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast d...Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.展开更多
A comprehensive proton-exchange membrane fuel cell stack model was developed and integrated with a two-stage DC/DC boost converter.It was directly coupled to a single-phase(two levels-four pulses)inverter without a tr...A comprehensive proton-exchange membrane fuel cell stack model was developed and integrated with a two-stage DC/DC boost converter.It was directly coupled to a single-phase(two levels-four pulses)inverter without a transformer.The pulse-width modu-lation signal was used to independently regulate every converter phase.The converter was modelled using a MATLAB®/Simulink®environment and an appropriate voltage control method.The analysis features of the suggested circuit were created and,through established experiments,the simulation results were verified.A single-phase(two levels-four pulses)inverter control circuit was tested and it produced a pure sinusoidal waveform with voltage control.It matches the voltage of the network in terms of amplitude and frequency.A sinusoidal pulse-width modulation approach was performed using a single-phase(two levels-four pulses)pulse-width modulation inverter.The results demonstrated an enhancement in the standard of the output wave and tuned the dead time with a reduction of 63μs compared with 180μs in conventional techniques.展开更多
This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent o...This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent of sag severity while maintaining the maximum power-point tracking(MPPT)under normal and faulty conditions. The addition of an energy storage buffer stage mitigates the DC-link voltage surge during sags. At the same time, the inverter injects the reactive power during back-to-back sags of variable depths. The control system of the inverter generates the appropriate reference signals for normal, LVRT, and anti-islanding modes while the MPPT continues running. The salient features of the proposed inverter are:(1) active power injection under normal grid conditions;(2)sag-depth independent LVRT with reactive power support;(3)no DC-link fluctuations;(4) continuous MPPT mode;and(5) simultaneous LVRT and anti-islanding support during a grid outage. The inverter demonstrates an uninterrupted operation and seamless transition between various operating modes. Simulations and the experimental prototype have been implemented to validate the efficacy of the proposed PV inverter.展开更多
Single-phase power converters are widely used in electric distribution systems under 10 kilowatts,where the second-order power imbalance between the AC side and DC side is an inherent issue.The pulsating power is deco...Single-phase power converters are widely used in electric distribution systems under 10 kilowatts,where the second-order power imbalance between the AC side and DC side is an inherent issue.The pulsating power is decoupled from the desired constant DC power,through an auxiliary circuit using energy storage components.This paper provides a comprehensive overview of the evolution of single-phase converter topologies underlining power decoupling techniques.Passive power decoupling techniques were commonly used in single-phase power converters before active power decoupling techniques were developed.Since then,active power decoupling topologies have generally evolved based on three streams of concepts:1)current-reference active power decoupling;2)DC voltage-reference active power decoupling;and 3)AC voltage-reference active power decoupling.The benefits and drawbacks of each topology have been presented and compared with its predecessor,revealing underlying logic in the evolution of the topologies.In addition,a general comparison has also been made in terms of decoupling capacitance/inductance,additional cost,efficiency and complexity of control,providing a benchmark for future power decoupling topologies.展开更多
Maximum power point tracking(MPPT)is a technique employed for with variable-power sources,such as solar,wind,and ocean,to maximize energy extraction under all conditions.The commonly used perturb and observe(P&O)a...Maximum power point tracking(MPPT)is a technique employed for with variable-power sources,such as solar,wind,and ocean,to maximize energy extraction under all conditions.The commonly used perturb and observe(P&O)and incremental conductance(INC)methods have advantages such as ease of implementation,but they also have the challenge of selecting the most optimized perturbation step or increment size while considering the trade-off between convergence time and oscillation.To address these issues,an MPPT solution for grid-connected photovoltaic(PV)systems is proposed that combines the golden section search(GSS),P&O,and INC methods to simultaneously achieve faster convergence and smaller oscillation,converging to the MPP by repeatedly narrowing the width of the interval at the rate of the golden ratio.The proposed MPPT technique was applied to a PV system consisting of a PV array,boost chopper,and inverter.Simulation and experimental results verify the feasibility and effectiveness of the proposed MPPT technique,by which the system is able to locate the MPP in 36 ms and regain a drifting MPP in approximately 30 ms under transient performance.The overall MPPT efficiency is 98.99%.展开更多
Due to the components at twice the fundamental frequency of output voltage in the instantaneous output power of a two-stage single-phase inverter(TSI),the second harmonic current(SHC)is generated in the frontend dc-dc...Due to the components at twice the fundamental frequency of output voltage in the instantaneous output power of a two-stage single-phase inverter(TSI),the second harmonic current(SHC)is generated in the frontend dc-dc converter(FDC).To reduce the SHC,optimizing the control strategy of the FDC is an effective and costless approach.Fromthe view of visual impedance,this paper conducts an intensive study on the SHC reduction strategies.Origin of the SHC is illustrated first.Then,the equivalent circuit models of the FDC under different control strategies are proposed to analyse the SHC propagation characteristic.The derived model can offer a better insight into how the inductor SHC is affected by the control parameters.According to the derived models,a synthesis of different control strategies is presented and the relevant parameters are listed for control design to achieve better suppression effect.The benefits and limitations of these control strategies are also discussed.Based on the proposed equivalent circuit models,several optimization methods are proposed to enhance the effect.A 1500 VA TSI prototype is built and simulated on MATLAB/Simulink,verifying the effectiveness of the proposed optimization methods.This paper is aimed to provide a guideline for the control design and control optimization of the TSIs.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51107016)the National Basic Research Program of China(Grant No.2013CB035605)the Postdoctoral Science Research Developmental Foundation of Heilongjiang Province,China(Grant No.LHB-Q12086)
文摘Complex dynamical phenomenon was studied in the single phase H-bridge inverter which was controlled by either a peak current or a valley current. The state functions and the discrete iterative map equations were established to analyze the dynamical phenomenon in the single phase H-bridge inverter. The dynamical characteristics of the single phase H- bridge inverter, such as time domain waveform diagram, bifurcation diagram, and folding map, were obtained by using the numerical calculation when the circuit parameters varied in specific range. Moreover, the simulation results were obtained by using the OrCAD-PSpice software to validate the numerical calculation. Both the numerical calculation and the circuit simulation show that the symmetrical dynamical phenomenon occurs in the single phase H-bridge inverter controlled by the peak current or the valley current.
基金Project (No. 50477033) supported by the National Natural ScienceFoundation of China
文摘The new 6-switch single-phase 5-level current-source inverter proposed in this paper was developed by properly simplifying the traditional 8-switch single-phase 5-level current-source inverter, and its operational principle was analyzed. Just like the problem of voltage-unbalance between different levels existing in voltage-source multilevel inverters, a similar problem of current-unbalance between different levels whether for the 8-switch single-phase 5-level current-source inverter, or for the new 6-switch 5-level current-source inverter also exists. A simple current-balance control method via DC current feedback is presented here to implement the current-balance control between different levels. And to reduce the output current harmonics, PWM control technique was used. Simulation and experimental results showed that this new 6-switch topology operates correctly and that the balance-inductor can almost equally distribute the total DC current.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61773006.
文摘A vector control based on the extended equivalent circuit and virtual circuits is proposed for the single-phase inverter.By the extended circuit,the other two phase voltages can be extended by the output voltage of the single-phase inverter so as to construct the voltage vector.The voltage outer-loop is to control the voltage vector in dq coordinate system,and the output voltage can track the target value without deviation in steady state.By designing the virtual circuit,the voltage inner-loop can achieve approximate decoupling and improve the dynamic response under the changeable load.Compared with the traditional dual closed-loop control,the proposed dual closed-loop control scheme only needs to detect and control the voltage without the current.It not only can achieve good control effect,but also reduce the complexity of the hardware.Finally,the simulation and experimental results show that the single-phase inverter has good static and dynamic characteristics regardless of stable load or changeable load.
基金funded by Geran Galakan Penyelidik Muda GGPM-2020-004 Universiti Kebangsaan Malaysia.
文摘Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.
文摘A comprehensive proton-exchange membrane fuel cell stack model was developed and integrated with a two-stage DC/DC boost converter.It was directly coupled to a single-phase(two levels-four pulses)inverter without a transformer.The pulse-width modu-lation signal was used to independently regulate every converter phase.The converter was modelled using a MATLAB®/Simulink®environment and an appropriate voltage control method.The analysis features of the suggested circuit were created and,through established experiments,the simulation results were verified.A single-phase(two levels-four pulses)inverter control circuit was tested and it produced a pure sinusoidal waveform with voltage control.It matches the voltage of the network in terms of amplitude and frequency.A sinusoidal pulse-width modulation approach was performed using a single-phase(two levels-four pulses)pulse-width modulation inverter.The results demonstrated an enhancement in the standard of the output wave and tuned the dead time with a reduction of 63μs compared with 180μs in conventional techniques.
基金supported by the Program Research Grant UMPEDAC-2020(No. MOHE HICOE-UMPEDAC)the Ministry of Education Malaysia (No.RU003-2020, RU002-2021)the University of Malaya。
文摘This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent of sag severity while maintaining the maximum power-point tracking(MPPT)under normal and faulty conditions. The addition of an energy storage buffer stage mitigates the DC-link voltage surge during sags. At the same time, the inverter injects the reactive power during back-to-back sags of variable depths. The control system of the inverter generates the appropriate reference signals for normal, LVRT, and anti-islanding modes while the MPPT continues running. The salient features of the proposed inverter are:(1) active power injection under normal grid conditions;(2)sag-depth independent LVRT with reactive power support;(3)no DC-link fluctuations;(4) continuous MPPT mode;and(5) simultaneous LVRT and anti-islanding support during a grid outage. The inverter demonstrates an uninterrupted operation and seamless transition between various operating modes. Simulations and the experimental prototype have been implemented to validate the efficacy of the proposed PV inverter.
文摘Single-phase power converters are widely used in electric distribution systems under 10 kilowatts,where the second-order power imbalance between the AC side and DC side is an inherent issue.The pulsating power is decoupled from the desired constant DC power,through an auxiliary circuit using energy storage components.This paper provides a comprehensive overview of the evolution of single-phase converter topologies underlining power decoupling techniques.Passive power decoupling techniques were commonly used in single-phase power converters before active power decoupling techniques were developed.Since then,active power decoupling topologies have generally evolved based on three streams of concepts:1)current-reference active power decoupling;2)DC voltage-reference active power decoupling;and 3)AC voltage-reference active power decoupling.The benefits and drawbacks of each topology have been presented and compared with its predecessor,revealing underlying logic in the evolution of the topologies.In addition,a general comparison has also been made in terms of decoupling capacitance/inductance,additional cost,efficiency and complexity of control,providing a benchmark for future power decoupling topologies.
基金Supported in part by the Natural Sciences and Engineering Research Council of Canadain part by the Atlantic Innovation Fund.
文摘Maximum power point tracking(MPPT)is a technique employed for with variable-power sources,such as solar,wind,and ocean,to maximize energy extraction under all conditions.The commonly used perturb and observe(P&O)and incremental conductance(INC)methods have advantages such as ease of implementation,but they also have the challenge of selecting the most optimized perturbation step or increment size while considering the trade-off between convergence time and oscillation.To address these issues,an MPPT solution for grid-connected photovoltaic(PV)systems is proposed that combines the golden section search(GSS),P&O,and INC methods to simultaneously achieve faster convergence and smaller oscillation,converging to the MPP by repeatedly narrowing the width of the interval at the rate of the golden ratio.The proposed MPPT technique was applied to a PV system consisting of a PV array,boost chopper,and inverter.Simulation and experimental results verify the feasibility and effectiveness of the proposed MPPT technique,by which the system is able to locate the MPP in 36 ms and regain a drifting MPP in approximately 30 ms under transient performance.The overall MPPT efficiency is 98.99%.
基金This work was supported in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200969(L.Z.,http://std.jiangsu.gov.cn/).
文摘Due to the components at twice the fundamental frequency of output voltage in the instantaneous output power of a two-stage single-phase inverter(TSI),the second harmonic current(SHC)is generated in the frontend dc-dc converter(FDC).To reduce the SHC,optimizing the control strategy of the FDC is an effective and costless approach.Fromthe view of visual impedance,this paper conducts an intensive study on the SHC reduction strategies.Origin of the SHC is illustrated first.Then,the equivalent circuit models of the FDC under different control strategies are proposed to analyse the SHC propagation characteristic.The derived model can offer a better insight into how the inductor SHC is affected by the control parameters.According to the derived models,a synthesis of different control strategies is presented and the relevant parameters are listed for control design to achieve better suppression effect.The benefits and limitations of these control strategies are also discussed.Based on the proposed equivalent circuit models,several optimization methods are proposed to enhance the effect.A 1500 VA TSI prototype is built and simulated on MATLAB/Simulink,verifying the effectiveness of the proposed optimization methods.This paper is aimed to provide a guideline for the control design and control optimization of the TSIs.