期刊文献+
共找到253篇文章
< 1 2 13 >
每页显示 20 50 100
Prediction of Porous Media Fluid Flow with Spatial Heterogeneity Using Criss-Cross Physics-Informed Convolutional Neural Networks
1
作者 Jiangxia Han Liang Xue +5 位作者 Ying Jia Mpoki Sam Mwasamwasa Felix Nanguka Charles Sangweni Hailong Liu Qian Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1323-1340,共18页
Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsi... Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN. 展开更多
关键词 Physical-informed neural networks(PINN) flow in porous media convolutional neural networks spatial heterogeneity machine learning
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
2
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY Pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
Flow characteristics and regime transition of aqueous foams in porous media over a wide range of quality,velocity,and surfactant concentration 被引量:1
3
作者 Bin-Fei Li Meng-Yuan Zhang +3 位作者 Zhao-Min Li Anthony Kovscek Yan Xin Bo-Liang Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1044-1052,共9页
Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T... Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams. 展开更多
关键词 Foam flow regime and transition porous media Pressure gradient flow velocity Surfactant concentration Foam quality
下载PDF
Dynamic behavior of coalbed methane flow along the annulus of single-phase production 被引量:3
4
作者 Xinfu Liu Chunhua Liu Guoqiang Liu 《International Journal of Coal Science & Technology》 EI 2019年第4期547-555,共9页
Dynamic behavior of coalbed methane (CBM) flow will provide the theoretical basis to optimize production performance for a given well.A mathematical model is developed to simulate flowing pressures and pressure drops ... Dynamic behavior of coalbed methane (CBM) flow will provide the theoretical basis to optimize production performance for a given well.A mathematical model is developed to simulate flowing pressures and pressure drops of CBM column from well head to bottom hole.The measured parameters and independent variables of flow rates,flowing pressures and temperatures are involved in CBM producing process along the annulus.The developed relationships are validated against full-scale measured data in single-phase CBM wellbores.The proposed methodology can analyze the dynamic behavior in CBM reservoir and process of CBM flow with an overall accuracy of 2%.The calculating process of flowing pressures involves friction factor with variable Reynolds number and CBM temperature and compressibility factor with gravitational gradients.The results showed that the effect of flowing pressure on CBM column was more obvious than that on CBM and water column accompanied by an increase of dynamic water level.The ratios of flowing pressure on increment of CBM column to the whole column increased with the declined flow rates of water column.Bottom-hole pressure declined with the decreased flowing pressure of CBM column along the annulus.It will lead to the results of the increased pressure drop of CBM column and CBM flow rate in single-phase CBM wellbores. 展开更多
关键词 Dynamic CHARACTERISTIC single-phase CBM wellbore flowing pressure of CBM COLUMN flow rate of CBM COLUMN
下载PDF
Flow and heat transfer of a nanofluid through a porous medium due to stretching/shrinking sheet with suction,magnetic field and thermal radiation
5
作者 Ubaidullah Yashkun Khairy Zaimi +2 位作者 Suliadi Firdaus Sufahani Mohamed REid Mohammad Ferdows 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2023年第3期373-391,共19页
This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governi... This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it. 展开更多
关键词 stagnation point flow NANOFLUID porous medium SUCTION MAGNETOHYDRODYNAMIC thermal radiation
下载PDF
The capillary pressure curves from upscaling interfacial and unsaturated flows in porous layers with vertical heterogeneity
6
作者 Zhong Zheng 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第4期287-290,共4页
We provide the capillary pressure curves p_(c)(s)as a function of the effective saturation s based on the theoretical framework of upscaling unsaturated flows in vertically heterogeneous porous layers proposed recentl... We provide the capillary pressure curves p_(c)(s)as a function of the effective saturation s based on the theoretical framework of upscaling unsaturated flows in vertically heterogeneous porous layers proposed recently(Z.Zheng,Journal of Fluid Mechanics,950,A17,2022).Based on the assumption of vertical gravitational-capillary equilibrium,the saturation distribution and profile shape of the invading fluid can be obtained by solving a nonlinear integral-differential equation.The capillary pressure curves p_(c)(s)can then be constructed by systematically varying the injection rate.Together with the relative permeability curves k_(rn)(s)that are already obtained.One can now provide quick estimates on the overall behaviours of interfacial and unsaturated flows in vertically-heterogeneous porous layers. 展开更多
关键词 flow upscaling Interfacial and unsaturated flow Wetting and capillary effects porous layer HETEROGENEITY
下载PDF
Numerical Approach of a Coupled Pressure-Saturation Model Describing Oil-Water Flow in Porous Media
7
作者 Paula Luna Arturo Hidalgo 《Communications on Applied Mathematics and Computation》 2023年第2期946-964,共19页
Two-phase flow in porous media is a very active field of research,due to its important applications in groundwater pollution,CO_(2)sequestration,or oil and gas production from petroleum reservoirs,just to name a few o... Two-phase flow in porous media is a very active field of research,due to its important applications in groundwater pollution,CO_(2)sequestration,or oil and gas production from petroleum reservoirs,just to name a few of them.Fractional flow equations,which make use of Darcy's law,for describing the movement of two immiscible fluids in a porous medium,are among the most relevant mathematical models in reservoir simulation.This work aims to solve a fractional flow model formed by an elliptic equation,representing the spatial distribution of the pressure,and a hyperbolic equation describing the space-time evolution of water saturation.The numerical solution of the elliptic part is obtained using a finite-element(FE)scheme,while the hyperbolic equation is solved by means of two dif-ferent numerical approaches,both in the finite-volume(FV)framework.One is based on a monotonic upstream-centered scheme for conservation laws(MUSCL)-Hancock scheme,whereas the other makes use of a weighted essentially non-oscillatory(ENO)reconstruc-tion.In both cases,a first-order centered(FORCE)-αnumerical scheme is applied for inter-cell flux reconstruction,which constitutes a new contribution in the field of fractional flow models describing oil-water movement.A relevant feature of this work is the study of the effect of the parameterαon the numerical solution of the models considered.We also show that,in the FORCE-αmethod,when the parameterαincreases,the errors diminish and the order of accuracy is more properly attained,as verified using a manufactured solution technique. 展开更多
关键词 Two-phase flow Reservoir simulation porous media FORCE-α Finite volume
下载PDF
Soft Template-Induced Porous Polyvinylidene Fluoride Membrane for Vanadium Flow Batteries
8
作者 Dingqin Shi Chunyang Li +1 位作者 Zhizhang Yuan Guojun Li 《Transactions of Tianjin University》 EI CAS 2023年第4期284-292,共9页
Vanadium flow batteries(VFBs)are considered ideal for grid-sc ale,long-duration energy storage applications owing to their decoupled output power and storage capacity,high safety,efficiency,and long cycle life.However... Vanadium flow batteries(VFBs)are considered ideal for grid-sc ale,long-duration energy storage applications owing to their decoupled output power and storage capacity,high safety,efficiency,and long cycle life.However,the widespread adoption of VFB s is hindered by the use of expensive Nafion membranes.Herein,we report a soft template-induced method to develop a porous polyvinylidene fluoride(PVDF)membrane for VFB applications.By incorporating water-soluble and flexible polyethylene glycol(PEG 400)as a soft template,we induced the aggregation of hydrophilic sulfonated poly(ether ether ketone),resulting in phase separation from the hydrophobic PVDF polymer during membrane formation.This process led to the creation of a porous PVDF membrane with controllable morphologies determined by the polyethylene glycol content in the cast solution.The optimized porous PVDF membrane enabled a stable VFB performance for 200 cycles at a current density of 80 mA/cm^(2),and the VFB exhibited a Coulombic efficiency of 95.2%and a voltage efficiency of 87.8%.These findings provide valuable insights for the development of highly stable membranes for VFB applications. 展开更多
关键词 Energy storage Vanadium flow battery porous polyvinylidene fluoride membrane Soft template-induced phase separation
下载PDF
Volumetric lattice Boltzmann method for pore-scale mass diffusionadvection process in geopolymer porous structures 被引量:1
9
作者 Xiaoyu Zhang Zirui Mao +6 位作者 Floyd W.Hilty Yulan Li Agnes Grandjean Robert Montgomery Hans-Conrad zur Loye Huidan Yu Shenyang Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2126-2136,共11页
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti... Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications. 展开更多
关键词 Volumetric lattice Boltzmann method(VLBM) Phase field method(PFM) Pore-scale diffusion-advection Nuclear waste treatment porous media flow Graphics processing unit(GPU) parallelization
下载PDF
The impact of heterogeneity and pore network characteristics on single and multi-phase fluid propagation in complex porous media:An X-ray computed tomography study
10
作者 Shohreh Iraji Tales Rodrigues De Almeida +2 位作者 Eddy Ruidiaz Munoz Mateus Basso Alexandre Campane Vidal 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1719-1738,共20页
This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifica... This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifically,high-resolution or micro X-ray computed tomography(CT)imaging techniques were utilized to examine outcrop stromatolite samples of the Lagoa Salgada,considered flow analogous to the Brazilian Pre-salt carbonate reservoirs.The petrophysical results comprised two distinct stromatolite depositional facies,the columnar and the fine-grained facies.By generating pore network model(PNM),the study quantified the relationship between key features of the porous system,including pore and throat radius,throat length,coordination number,shape factor,and pore volume.The study found that the less dense pore network of the columnar sample is typically characterized by larger pores and wider and longer throats but with a weaker connection of throats to pores.Both facies exhibited less variability in the radius of the pores and throats in comparison to throat length.Additionally,a series of core flooding experiments coupled with medical CT scanning was designed and conducted in the plug samples to assess flow propagation and saturation fields.The study revealed that the heterogeneity and presence of disconnected or dead-end pores significantly impacted the flow patterns and saturation.Two-phase flow patterns and oil saturation distribution reveal a preferential and heterogeneous displacement that mainly swept displaced fluid in some regions of plugs and bypassed it in others.The relation between saturation profiles,porosity profiles,and the number of fluid flow patterns for the samples was evident.Only for the columnar plug sample was the enhancement in recovery factor after shifting to lower salinity water injection(SB)observed. 展开更多
关键词 Pore network model Heterogeneous porous media flow patterns Dead-end pores
下载PDF
Fiber Bundle Topology Optimization for Surface Flows
11
作者 Yongbo Deng Weihong Zhang +2 位作者 Jihong Zhu Yingjie Xu Jan G Korvink 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期236-264,共29页
This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern ... This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective. 展开更多
关键词 Fiber bundle Topology optimization 2-MANIFOLD Surface flow Material distribution method porous medium model
下载PDF
P-and SV-wave dispersion and attenuation in saturated microcracked porous rock with aligned penny-shaped fractures
12
作者 Sheng-Qing Li Wen-Hao Wang +2 位作者 Yuan-Da Su Jun-Xin Guo Xiao-Ming Tang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期143-161,共19页
P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation me... P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model. 展开更多
关键词 Aligned fractures P-and SV-wave Dispersion and attenuation Microcracked porous background FB-WIFF Elastic scattering Squirt flow
下载PDF
Heat and mass transfer of a circular porous moist object located in a triangular shaped vented cavity
13
作者 SELIMEFENDIGIL Fatih OZCAN COBAN Seda OZTOP Hakan F 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1956-1972,共17页
Heat and mass transfer of a circular-shaped porous moist object inside a two-dimensional triangle cavity is investigated by using finite element method.The porous object is considered to be a moist food sample,located... Heat and mass transfer of a circular-shaped porous moist object inside a two-dimensional triangle cavity is investigated by using finite element method.The porous object is considered to be a moist food sample,located in the middle of the cavity with inlet and outlet ports with different configurations of inlet/outlet ports.Convective drying performance is numerically assessed for different values of Reynolds numbers(between 50 and 250),dry air inlet temperature(between 40 and 80℃)and different locations of the port.It is observed that changing the port locations has significant impacts on the flow recirculaitons inside the triangular chamber while convective drying performance is highly affected.The moisture content reduces with longer time and for higher Reynolds number(Re)values.Case P4 where inlet and outlet ports are in the middle of the walls provides the most effective configuration in terms of convective drying performance while the worst case is seen for P1 case where inlet and outlet are closer to the corners of the chamber.There is a 192% difference between the moisture reduction of these two cases at Re=250,T=80℃ and t=120 min. 展开更多
关键词 convective drying porous domain cavity flow inlet/exit port finite element method
下载PDF
Anisotropic dynamic permeability model for porous media
14
作者 PEI Xuehao LIU Yuetian +3 位作者 LIN Ziyu FAN Pingtian MI Liao XUE Liang 《Petroleum Exploration and Development》 SCIE 2024年第1期193-202,共10页
Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was ... Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was verified using pore-scale flow simulation.The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed.In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs,the effect of effective surface porosity on the permeability in all directions is consistent.With the decrease of effective surface porosity,the sensitivity of permeability to strain increases.The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity,while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity.For layered reservoirs with the same initial tortuosity in all directions,the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop.When the tortuosity is less than 1.6,the decrease rate of horizontal permeability is higher than that of vertical permeability,while the opposite is true when the tortuosity is greater than 1.6.This phenomenon cannot be represented by traditional dynamic permeability model.After the verification by experimental data of pore-scale simulation,the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions. 展开更多
关键词 porous media dynamic permeability ANISOTROPY capillary network model TORTUOSITY normal strain flow simulation permeability change characteristics
下载PDF
A quasi single-phase model for debris flows and its comparison with a two-phase model
15
作者 XIA Chun-chen LI Ji +2 位作者 CAO Zhi-xian LIU Qing-quan HU Kai-heng 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1071-1089,共19页
A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctua... A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctuations are incorporated based on analogy to turbulent flows, as estimated using the depth-averaged k-? turbulence model and a modification component. A fully conservative numerical algorithm, using wellbalanced slope limited centred scheme, is deployed to solve the governing equations. The present quasi single-phase model using four closure relationships for the bed shear stresses is evaluated against USGS experimental debris flow and compared with traditional quasi single-phase models and a recent physically enhanced two-phase model. It is found that the present quasi single-phase model performs much better than the traditional models, and is attractive in terms of computational cost while the two-phase model performs even better appreciably. 展开更多
关键词 DEBRIS flows QUASI single-phase mixturemodel Stresses DUE to fluctuations Well-balanced
下载PDF
Single-Phase Velocity Determination Based in Video and Sub-Images Processing:An Optical Flow Method Implemented with Support of a Programmed MatLab Structured Script 被引量:1
16
作者 Andreas Nascimento Edson Da Costa Bortoni +2 位作者 José Luiz Goncalves Pedro Antunes Duarte Mauro Hugo Mathias 《Journal of Software Engineering and Applications》 2015年第6期290-294,共5页
Important in many different sectors of the industry, the determination of stream velocity has become more and more important due to measurements precision necessity, in order to determine the right production rates, d... Important in many different sectors of the industry, the determination of stream velocity has become more and more important due to measurements precision necessity, in order to determine the right production rates, determine the volumetric production of undesired fluid, establish automated controls based on these measurements avoiding over-flooding or over-production, guaranteeing accurate predictive maintenance, etc. Difficulties being faced have been the determination of the velocity of specific fluids embedded in some others, for example, determining the gas bubbles stream velocity flowing throughout liquid fluid phase. Although different and already applicable methods have been researched and already implemented within the industry, a non-intrusive automated way of providing those stream velocities has its importance, and may have a huge impact in projects budget. Knowing the importance of its determination, this developed script uses a methodology of breaking-down real-time videos media into frame images, analyzing by pixel correlations possible superposition matches for further gas bubbles stream velocity estimation. In raw sense, the script bases itself in functions and procedures already available in MatLab, which can be used for image processing and treatments, allowing the methodology to be implemented. Its accuracy after the running test was of around 97% (ninety-seven percent);the raw source code with comments had almost 3000 (three thousand) characters;and the hardware placed for running the code was an Intel Core Duo 2.13 [Ghz] and 2 [Gb] RAM memory capable workstation. Even showing good results, it could be stated that just the end point correlations were actually getting to the final solution. So that, making use of self-learning functions or neural network, one could surely enhance the capability of the application to be run in real-time without getting exhaust by iterative loops. 展开更多
关键词 Optical flow single-phase Velocity Video and Image Processing Sensing MatLab Script
下载PDF
SENSITIVITY COEFFICIENTS OF SINGLE-PHASE FLOW IN LOW-PERMEABILITY HETEROGENEOUS RESERVOIRS
17
作者 程时清 张盛宗 +1 位作者 黄延章 朱维耀 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第6期712-720,共9页
Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained.... Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained. It is shown by a lot of numerical calculations that the wellbore pressures are much more sensitive to permeability very near the well than to permeability a few gridblocks away from the well. When an initial pressure gradient existent sensitivity coefficients in the region are closer to the active well than to the observation well. Sensitivity coefficients of observation well at the line between the active well and the observation well are influenced greatly by the initial pressure gradient. 展开更多
关键词 non-Darcy flow through porous media PERMEABILITY POROSITY sensitivity coefficient inverse problem low-permeability reservoir
下载PDF
Pore structure and liquid flow velocity distribution in water-saturated porous media probed by MRI 被引量:3
18
作者 吴爱祥 刘超 +2 位作者 尹升华 薛振林 陈勋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1403-1409,共7页
Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at th... Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at three different flow rates were obtained. To determine the pore-parameter of the porous media, the internal structure of the bed was also obtained using image processing technique. The results show that the porosity of the sample is 31.28% and the fitting curve for the distribution of pore equivalent diameter follows Gaussian distribution. The velocity profiles do shift as the flow rate varies and the solution flow through the void space is not a homogeneous flow in any pores. The velocity distributions within the pore are roughly parabolic with the local maximum being near the center. About half of the velocity components are in the class of 0-1 cm/s. The frequency of lower velocity components is lower at higher flow rate, but to higher velocity components, it is just the opposite. 展开更多
关键词 magnetic resonance imaging porous media flow velocity POROSITY pore equivalent diameter
下载PDF
Review on the Development of Oil and Gas Flow in Underground Porous Media 被引量:1
19
作者 李军诗 王晓冬 +1 位作者 刘鹏程 侯晓春 《Petroleum Science》 SCIE CAS CSCD 2004年第4期88-94,共7页
Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main facto... Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper. 展开更多
关键词 porous flow mechanics of fluids in porous media viscous fluids mechanics of ground water petroleum and natural gas engineering REVIEW PROGRESSION
下载PDF
Gas Condensate Two Phase Flow Performance in Porous Media Considering Capillary Number and Non-Darcy Effects
20
作者 覃斌 李相方 程时清 《Petroleum Science》 SCIE CAS CSCD 2004年第3期49-55,共7页
Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne... Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods. 展开更多
关键词 Gas condensate two-phase flow porous media capillary number non-Darcy effect
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部