To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the p...To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061.展开更多
Aluminum-silicon (Al-Si) alloy is very difficult to machine and diamond tools are considered by far the best choice for the machining of these materials. Experimental results in the machining of the Al-Si alloy with...Aluminum-silicon (Al-Si) alloy is very difficult to machine and diamond tools are considered by far the best choice for the machining of these materials. Experimental results in the machining of the Al-Si alloy with diamond coated inserts are presented. Considering the fact that high adhesive strength and fine surface morphology play an importance role in the applications of chemical vapor deposition (CVD) diamond films, multilayer technique combining the hot filament CVD (HFCVD) method is proposed, by which multilayer diamond-coating on silicon nitride inserts is obtained, microcrystalline diamond (MCD)/ nanocrystalline diamond (NCD) film. Also, the conventional monolayer NCD and MCD coated inserts are produced for comparison. The as-deposited diamond films are characterized by field emission scanning electron microscopy (FE-SEM) and Raman spectrum. All the CVD diamond coated inserts and uncoated insert endure the aluminum-silicon alloy turning to estimate their cutting performances. Among all the tested inserts, the MCD/NCD coated insert exhibits the perfect behavior as tool wear due to its very low flank wear and no diamond peeling.展开更多
For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest o...For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.展开更多
Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the...Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance展开更多
Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on c...Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on cutting mechanisms is crucial for promoting the capability of the machining technique,numerical simulation methods at different length and time scales act as important supplements to experimental investigations.In this work,we present a compact review on recent advancements in the numerical simulations of material-oriented diamond cutting,in which representative machining phenomena are systematically summarized and discussed by multiscale simulations such as molecular dynamics simulation and finite element simulation:the anisotropy cutting behavior of polycrystalline material,the thermo-mechanical coupling tool-chip friction states,the synergetic cutting responses of individual phase in composite materials,and the impact of various external energetic fields on cutting processes.In particular,the novel physics-based numerical models,which involve the high precision constitutive law associated with heterogeneous deformation behavior,the thermo-mechanical coupling algorithm associated with tool-chip friction,the configurations of individual phases in line with real microstructural characteristics of composite materials,and the integration of external energetic fields into cutting models,are highlighted.Finally,insights into the future development of advanced numerical simulation techniques for diamond cutting of advanced structured materials are also provided.The aspects reported in this review present guidelines for the numerical simulations of ultra-precision mechanical machining responses for a variety of materials.展开更多
Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chem...Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chemical reactions between diamond and non-diamond-machinable metal elements,including Fe,Cr,Ti,Ni,etc,can cause excessive tool wear in diamond cutting of such metals and most of their alloys.This paper reviews the latest achievements in the chemical wear and wear suppression methods for diamond tools in cutting of ferrous metals.The focus will be on the wear mechanism of diamond tools,and the typical wear reduction methods for diamond cutting of ferrous metals,including ultrasonic vibration cutting,cryogenic cutting,surface nitridation and plasma assisted cutting,etc.Relevant commercially available devices are introduced as well.Furthermore,future research trends in diamond tool wear suppression are discussed and examined.展开更多
Single point diamond fly cutting is widely used in the manufacture of large-aperture ultra-precision optical elements. However,some micro waviness( amplitude about 30 nm,wavelength about 15 mm) along the cutting direc...Single point diamond fly cutting is widely used in the manufacture of large-aperture ultra-precision optical elements. However,some micro waviness( amplitude about 30 nm,wavelength about 15 mm) along the cutting direction which will decrease the quality of the optical elements can always be found in the processed surface,and the axial vibration of the spindle caused by the cut-in process is speculated as the immediate cause of this waviness. In this paper,the analytical method of dynamic mesh is applied for simulating the dynamic behavior of the vertical spindle. The consequence is then exerted to the fly cutter and the processed surface profile is simulated. The wavelength of the simulation result coincides well with the experimental result which proves the importance of the cut-in process during the single point diamond fly cutting.展开更多
To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to eval...To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to evaluate the influence of cutting fluid properties on the machinability of glass. The sodium carbonate solution of 10.5% concentration was chosen as cutting fluid. Then the critical depths in scratching experiments with and without cutting fluid were examined. Based on this, turning experiments were carried out, and the surface quality of SF6 was assessed. Compared with the process of dry cutting, the main indexes of surface roughness decrease by over 70% totally. Experimental results indicated that the machinability of glass SF6 can be improved by using the sodium carbonate solution as cutting fluid.展开更多
CFRP (carbon fiber reinforced plastic), which is composed of carbon fibers in a resin matrix, is an extremely strong and light composite material that has found use in the aerospace and automotive industries. CFRP b...CFRP (carbon fiber reinforced plastic), which is composed of carbon fibers in a resin matrix, is an extremely strong and light composite material that has found use in the aerospace and automotive industries. CFRP boards are very difficult to machine using common machining processes. Various machining artifacts, such as burrs and delamination, occur frequently when machining CFRP. Adequate techniques for machining CFRP have not yet been established. Recently, electroplated diamond wire machining technology has found use in cutting hard, brittle materials such as silicon and sapphire. In this study, we used an electroplated diamond wire saw to cut a CFRP workpiece. We quantified the cutting forces imposed on the workpiece and observed the surface state of the workpiece after cutting. We demonstrated that an electroplated diamond wire tool is suitable for the high-quality machining of CFRP boards.展开更多
A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a r...A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.展开更多
The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cu...The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.展开更多
This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted...This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted where the drilling rate-of-penetration(ROP) was measured at a series of step-wise increasing static bit thrusts or weight-on-bits(WOBs). Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission(AE) system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT(linear variable differential transformer) recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP.展开更多
Texturing of diamond wire cut wafers using a standard wafer etch process chemistry has always been a challenge in solar cell manufacturing industry. This is due to the change in surface morphology of diamond wire cut ...Texturing of diamond wire cut wafers using a standard wafer etch process chemistry has always been a challenge in solar cell manufacturing industry. This is due to the change in surface morphology of diamond wire cut wafers and the abundant presence of amorphous silicon content, which are introduced from wafer manufacturing industry during sawing of multi-crystalline wafers using ultra-thin diamond wires. The industry standard texturing process for multi-crystalline wafers cannot deliver a homogeneous etched silicon surface, thereby requiring an additive compound, which acts like a surfactant in the acidic etch bath to enhance the texturing quality on diamond wire cut wafers. Black silicon wafers on the other hand require completely a different process chemistry and are normally textured using a metal catalyst assisted etching technique or by plasma reactive ion etching technique. In this paper, various challenges associated with cell processing steps using diamond wire cut and black silicon wafers along with cell electrical results using each of these wafer types are discussed.展开更多
As a cutting tool,diamond films made by chemical vapor deposition(CVD) outperformed polycrystalline diamond(PCD) sintered under ultrahigh pressure.For example,the longevity of the CVD tools may be 2~5 times that of P...As a cutting tool,diamond films made by chemical vapor deposition(CVD) outperformed polycrystalline diamond(PCD) sintered under ultrahigh pressure.For example,the longevity of the CVD tools may be 2~5 times that of PCD inserts.In addition,the former cutting paths are strainghter with less chipping on the edge.However,there have been no report on CVD diamond films that were used as a roller scriber for splitting large glass panels.Our research demonstrated that the CVD diamond film could concentrate the energy in a smaller area(about 1/4),so the glass compressed by the tip of the diamond film was under a larger tensile stress in perpendicular to the direction of compression.The tensile stress then initiated the microcracks that were more in line with the direction of the compression. The reason that CVD diamond film could concentrate the compressive stress was due to its 100%diamond content.The high diamond content could allow the tip to be polished sharper.In contrast,the PCD cutting tip contained micro grains of cobalt that were softer than glass.As a result,the compressional stress was spreading out due to the larger area of contact.Consequently,the microcracks initiated at the PCD tip were random and they might not propagate along the direction of cutting.展开更多
The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account...The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account of factors such as size effects,the undeformed cutting thickness,the tool blunt radius,and the tool rake angle.Therefore,this paper proposes a new theoretical calculation model for accurately predicting the cutting force in ultra-precision machining,taking account of such factors.The model is first used to analyze the material deformation of the workpiece and the cutting force distribution along the cutting edge of a diamond tool.The size of the strain zone in different cutting deformation zones is then determined by using the distribution of strain work per unit volume and considering the characteristics of the stress distribution in these different deformation zones.Finally,the cutting force during ultra-precision machining is predicted precisely by calculating the material strain energy in different zones.A finite element analysis and experimental data on ultra-precision cutting of copper and aluminum are used to verify the predictions of the theoretical model.The results show that the error in the cutting force between the calculation results and predictions of the model is less than 14%.The effects of the rake face stress distribution of the diamond tool,the close contact zone,and material elastic recovery can be fully taken into account by the theoretical model.Thus,the proposed theoretical calculation method can effectively predict the cutting force in ultra-precision machining.展开更多
With the increasing use of difficult-to-machine materials in aerospace applications,machining requirements are becoming ever more rigorous.However,traditional single-point diamond turning(SPDT)can cause surface damage...With the increasing use of difficult-to-machine materials in aerospace applications,machining requirements are becoming ever more rigorous.However,traditional single-point diamond turning(SPDT)can cause surface damage and tool wear.Thus,it is difficult for SPDT to meet the processing requirements,and it has significant limitations.Research indicates that supplementing SPDT with unconventional techniques can,importantly,solve problems due to the high cutting forces and poor surface quality for difficult-to-machine materials.This paper first introduces SPDT and reviews research into unconventional techniques for use with SPDT.The machining mechanism is discussed,and the main advantages and disadvantages of various methods are investigated.Second,hybrid SPDT is briefly described,which encompasses ultrasonic-vibration magnetic-field SPDT,ultrasonic-vibration laser SPDT,and ultrasonic-vibration cold-plasma SPDT.Compared with the traditional SPDT method,hybrid SPDT produces a better optical surface quality.The current status of research into unconventional techniques to supplement SPDT is then summarized.Finally,future development trends and the application prospects of unconventional assisted SPDT are discussed.展开更多
Studies on surface wettability have received tremendous interest due to their potential applications in research and industrial processes. One of the strategies to tune surface wettability is modifying surface topogra...Studies on surface wettability have received tremendous interest due to their potential applications in research and industrial processes. One of the strategies to tune surface wettability is modifying surface topography at micro-and nanoscales. In this research, periodic micro-and nanostructures were patterned on several polymer surfaces by ultra-precision single point diamond turning to investigate the relationships between surface topographies at the micro-and nanoscales and their surface wettability. This research revealed that single-point diamond turning could be used to enhance the wettability of a variety of polymers, including polyvinyl chloride(PVC), polyethylene 1000(PE1000), polypropylene copolymer(PP) and polytetrafluoroethylene(PFTE), which cannot be processed by conventional semiconductor-based manufacturing processes. Materials exhibiting common wettability properties(θ≈ 90°) changed to exhibit "superhydrophobic" behavior(θ > 150°). Compared with the size of the structures, the aspect ratio of the void space between micro-and nanostructures has a strong impact on surface wettability.展开更多
Diamond films were deposited on the WC-Co cemented carbide and Si3N4 ceramic cutting tool substrates by hot-filament-assisted chemical vapour deposition. The adherence property of diamond films was estimated using the...Diamond films were deposited on the WC-Co cemented carbide and Si3N4 ceramic cutting tool substrates by hot-filament-assisted chemical vapour deposition. The adherence property of diamond films was estimated using the critical load (Pcr) in the indentation test. The adhesive strength of diamond films is related to the intermediate layer between the film and the substrate. Poor adhesion of diamond films to polished cemented carbide substrate is owing to the formation of graphite phase in the interface. The adhesion of diamond films deposited on acid etched cemented carbide substrate is improved, and the peeling-off of the films often happens in the loosen layer of WC particles where the cobalt element is nearly removed. The diamond films' adhesion to cemented carbide substrate whose surface layer is decarbonizated is strengthened dramatically because WC phase forms by reaction between the deposited carbon and tungsten in the surface layer of substrates during the deposition of diamond, which results in chemical combination in the film-substrate interface. The adhesion of diamond films to silicon nitride substrate is the firmest due to the formation of chemical combination of the SiC intermediate layer in the interfaces. In the piston-turning application, the diamond-coated Si3N4 ceramic and the cemented carbide cutting tools usually fail in the form of collapsing of edge and cracking or flaking respectively. They have no built-up edge(BUE) as long as coating is intact.As it wears through, BUE develops and the cutting force on it increases 1 - 3 times than that prior to failure. This can predict the failure of diamond-coated cutting tools.展开更多
We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and m...We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning.展开更多
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm...The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.展开更多
基金Funded by Natural Science Foundation of Guangdong Province,China (No.2017A030313330)Science and Technology Program of Guangzhou (No.201804020040)。
文摘To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061.
基金Project(50975177)supported by the National Natural Science Foundation of China
文摘Aluminum-silicon (Al-Si) alloy is very difficult to machine and diamond tools are considered by far the best choice for the machining of these materials. Experimental results in the machining of the Al-Si alloy with diamond coated inserts are presented. Considering the fact that high adhesive strength and fine surface morphology play an importance role in the applications of chemical vapor deposition (CVD) diamond films, multilayer technique combining the hot filament CVD (HFCVD) method is proposed, by which multilayer diamond-coating on silicon nitride inserts is obtained, microcrystalline diamond (MCD)/ nanocrystalline diamond (NCD) film. Also, the conventional monolayer NCD and MCD coated inserts are produced for comparison. The as-deposited diamond films are characterized by field emission scanning electron microscopy (FE-SEM) and Raman spectrum. All the CVD diamond coated inserts and uncoated insert endure the aluminum-silicon alloy turning to estimate their cutting performances. Among all the tested inserts, the MCD/NCD coated insert exhibits the perfect behavior as tool wear due to its very low flank wear and no diamond peeling.
基金supported by National Natural Science Foundation of China(Grant No. 50775057)
文摘For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.
基金Supported by National Natural Science Foundation of China(Grant No.51275302)China Postdoctoral Science Foundation Special Funded Project(Grant No.2016T90370)China Postdoctoral Science Foundation(Grant No.2015M580327)
文摘Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance
基金support from the National Natural Science Foundation of China(52275416 and 51905194)National Key Research and Development Program(2021YFC2202303)Science Challenge Project(No.TZ2018006-0201-02)。
文摘Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on cutting mechanisms is crucial for promoting the capability of the machining technique,numerical simulation methods at different length and time scales act as important supplements to experimental investigations.In this work,we present a compact review on recent advancements in the numerical simulations of material-oriented diamond cutting,in which representative machining phenomena are systematically summarized and discussed by multiscale simulations such as molecular dynamics simulation and finite element simulation:the anisotropy cutting behavior of polycrystalline material,the thermo-mechanical coupling tool-chip friction states,the synergetic cutting responses of individual phase in composite materials,and the impact of various external energetic fields on cutting processes.In particular,the novel physics-based numerical models,which involve the high precision constitutive law associated with heterogeneous deformation behavior,the thermo-mechanical coupling algorithm associated with tool-chip friction,the configurations of individual phases in line with real microstructural characteristics of composite materials,and the integration of external energetic fields into cutting models,are highlighted.Finally,insights into the future development of advanced numerical simulation techniques for diamond cutting of advanced structured materials are also provided.The aspects reported in this review present guidelines for the numerical simulations of ultra-precision mechanical machining responses for a variety of materials.
基金This work was supported by Science Challenge Project(Nos.TZ2016006-0103 and TZ2016006-0107-02)National Natural Science Foundation of China(Nos.90923025 and 51905194)Science Fund for Creative Research Groups of NSFC(No.51621064).The sincere thanks are given to Professor Zhang Xinquan(Shanghai Jiao Tong University)for his comments,and Mr Xu Yongbo for his kind assistance.
文摘Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chemical reactions between diamond and non-diamond-machinable metal elements,including Fe,Cr,Ti,Ni,etc,can cause excessive tool wear in diamond cutting of such metals and most of their alloys.This paper reviews the latest achievements in the chemical wear and wear suppression methods for diamond tools in cutting of ferrous metals.The focus will be on the wear mechanism of diamond tools,and the typical wear reduction methods for diamond cutting of ferrous metals,including ultrasonic vibration cutting,cryogenic cutting,surface nitridation and plasma assisted cutting,etc.Relevant commercially available devices are introduced as well.Furthermore,future research trends in diamond tool wear suppression are discussed and examined.
基金Sponsored by the National Science and Technology Special Program(Grant No.2011ZX04004-041)the National Natural Science Foundation of China(Grant No.90923023 and No.51275115)
文摘Single point diamond fly cutting is widely used in the manufacture of large-aperture ultra-precision optical elements. However,some micro waviness( amplitude about 30 nm,wavelength about 15 mm) along the cutting direction which will decrease the quality of the optical elements can always be found in the processed surface,and the axial vibration of the spindle caused by the cut-in process is speculated as the immediate cause of this waviness. In this paper,the analytical method of dynamic mesh is applied for simulating the dynamic behavior of the vertical spindle. The consequence is then exerted to the fly cutter and the processed surface profile is simulated. The wavelength of the simulation result coincides well with the experimental result which proves the importance of the cut-in process during the single point diamond fly cutting.
基金Supported by National Natural Science Foundation of China (No. 50775057)
文摘To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to evaluate the influence of cutting fluid properties on the machinability of glass. The sodium carbonate solution of 10.5% concentration was chosen as cutting fluid. Then the critical depths in scratching experiments with and without cutting fluid were examined. Based on this, turning experiments were carried out, and the surface quality of SF6 was assessed. Compared with the process of dry cutting, the main indexes of surface roughness decrease by over 70% totally. Experimental results indicated that the machinability of glass SF6 can be improved by using the sodium carbonate solution as cutting fluid.
文摘CFRP (carbon fiber reinforced plastic), which is composed of carbon fibers in a resin matrix, is an extremely strong and light composite material that has found use in the aerospace and automotive industries. CFRP boards are very difficult to machine using common machining processes. Various machining artifacts, such as burrs and delamination, occur frequently when machining CFRP. Adequate techniques for machining CFRP have not yet been established. Recently, electroplated diamond wire machining technology has found use in cutting hard, brittle materials such as silicon and sapphire. In this study, we used an electroplated diamond wire saw to cut a CFRP workpiece. We quantified the cutting forces imposed on the workpiece and observed the surface state of the workpiece after cutting. We demonstrated that an electroplated diamond wire tool is suitable for the high-quality machining of CFRP boards.
文摘A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.
基金Project(51175122)supported by the National Natural Science Foundation of China
文摘The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.
基金funded by Atlantic Canada Opportunity Agency (AIF contract number: 7812636-1920044)
文摘This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted where the drilling rate-of-penetration(ROP) was measured at a series of step-wise increasing static bit thrusts or weight-on-bits(WOBs). Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission(AE) system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT(linear variable differential transformer) recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP.
文摘Texturing of diamond wire cut wafers using a standard wafer etch process chemistry has always been a challenge in solar cell manufacturing industry. This is due to the change in surface morphology of diamond wire cut wafers and the abundant presence of amorphous silicon content, which are introduced from wafer manufacturing industry during sawing of multi-crystalline wafers using ultra-thin diamond wires. The industry standard texturing process for multi-crystalline wafers cannot deliver a homogeneous etched silicon surface, thereby requiring an additive compound, which acts like a surfactant in the acidic etch bath to enhance the texturing quality on diamond wire cut wafers. Black silicon wafers on the other hand require completely a different process chemistry and are normally textured using a metal catalyst assisted etching technique or by plasma reactive ion etching technique. In this paper, various challenges associated with cell processing steps using diamond wire cut and black silicon wafers along with cell electrical results using each of these wafer types are discussed.
文摘As a cutting tool,diamond films made by chemical vapor deposition(CVD) outperformed polycrystalline diamond(PCD) sintered under ultrahigh pressure.For example,the longevity of the CVD tools may be 2~5 times that of PCD inserts.In addition,the former cutting paths are strainghter with less chipping on the edge.However,there have been no report on CVD diamond films that were used as a roller scriber for splitting large glass panels.Our research demonstrated that the CVD diamond film could concentrate the energy in a smaller area(about 1/4),so the glass compressed by the tip of the diamond film was under a larger tensile stress in perpendicular to the direction of compression.The tensile stress then initiated the microcracks that were more in line with the direction of the compression. The reason that CVD diamond film could concentrate the compressive stress was due to its 100%diamond content.The high diamond content could allow the tip to be polished sharper.In contrast,the PCD cutting tip contained micro grains of cobalt that were softer than glass.As a result,the compressional stress was spreading out due to the larger area of contact.Consequently,the microcracks initiated at the PCD tip were random and they might not propagate along the direction of cutting.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51305278)the Liaoning Revitalization Talents Program,China(GrantNo.XLYC2007133)the Natural Science Foundation of Liaoning Province,China(GrantNo.2020-MS-213).
文摘The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account of factors such as size effects,the undeformed cutting thickness,the tool blunt radius,and the tool rake angle.Therefore,this paper proposes a new theoretical calculation model for accurately predicting the cutting force in ultra-precision machining,taking account of such factors.The model is first used to analyze the material deformation of the workpiece and the cutting force distribution along the cutting edge of a diamond tool.The size of the strain zone in different cutting deformation zones is then determined by using the distribution of strain work per unit volume and considering the characteristics of the stress distribution in these different deformation zones.Finally,the cutting force during ultra-precision machining is predicted precisely by calculating the material strain energy in different zones.A finite element analysis and experimental data on ultra-precision cutting of copper and aluminum are used to verify the predictions of the theoretical model.The results show that the error in the cutting force between the calculation results and predictions of the model is less than 14%.The effects of the rake face stress distribution of the diamond tool,the close contact zone,and material elastic recovery can be fully taken into account by the theoretical model.Thus,the proposed theoretical calculation method can effectively predict the cutting force in ultra-precision machining.
基金supported by the National Natural Science Foundation of China(Grant No.52175431)the Natural Science Foundation of Tianjin of China(Grant No.22JCZDJC00730)the Scientific Research Project of Tianjin Municipal Education Commission(Grant No.2022ZD021).
文摘With the increasing use of difficult-to-machine materials in aerospace applications,machining requirements are becoming ever more rigorous.However,traditional single-point diamond turning(SPDT)can cause surface damage and tool wear.Thus,it is difficult for SPDT to meet the processing requirements,and it has significant limitations.Research indicates that supplementing SPDT with unconventional techniques can,importantly,solve problems due to the high cutting forces and poor surface quality for difficult-to-machine materials.This paper first introduces SPDT and reviews research into unconventional techniques for use with SPDT.The machining mechanism is discussed,and the main advantages and disadvantages of various methods are investigated.Second,hybrid SPDT is briefly described,which encompasses ultrasonic-vibration magnetic-field SPDT,ultrasonic-vibration laser SPDT,and ultrasonic-vibration cold-plasma SPDT.Compared with the traditional SPDT method,hybrid SPDT produces a better optical surface quality.The current status of research into unconventional techniques to supplement SPDT is then summarized.Finally,future development trends and the application prospects of unconventional assisted SPDT are discussed.
基金financial support from Heriot-Watt University (Edinburgh)the Engineering and Physical Sciences Research Council (EP/K018345/1) for this study
文摘Studies on surface wettability have received tremendous interest due to their potential applications in research and industrial processes. One of the strategies to tune surface wettability is modifying surface topography at micro-and nanoscales. In this research, periodic micro-and nanostructures were patterned on several polymer surfaces by ultra-precision single point diamond turning to investigate the relationships between surface topographies at the micro-and nanoscales and their surface wettability. This research revealed that single-point diamond turning could be used to enhance the wettability of a variety of polymers, including polyvinyl chloride(PVC), polyethylene 1000(PE1000), polypropylene copolymer(PP) and polytetrafluoroethylene(PFTE), which cannot be processed by conventional semiconductor-based manufacturing processes. Materials exhibiting common wettability properties(θ≈ 90°) changed to exhibit "superhydrophobic" behavior(θ > 150°). Compared with the size of the structures, the aspect ratio of the void space between micro-and nanostructures has a strong impact on surface wettability.
文摘Diamond films were deposited on the WC-Co cemented carbide and Si3N4 ceramic cutting tool substrates by hot-filament-assisted chemical vapour deposition. The adherence property of diamond films was estimated using the critical load (Pcr) in the indentation test. The adhesive strength of diamond films is related to the intermediate layer between the film and the substrate. Poor adhesion of diamond films to polished cemented carbide substrate is owing to the formation of graphite phase in the interface. The adhesion of diamond films deposited on acid etched cemented carbide substrate is improved, and the peeling-off of the films often happens in the loosen layer of WC particles where the cobalt element is nearly removed. The diamond films' adhesion to cemented carbide substrate whose surface layer is decarbonizated is strengthened dramatically because WC phase forms by reaction between the deposited carbon and tungsten in the surface layer of substrates during the deposition of diamond, which results in chemical combination in the film-substrate interface. The adhesion of diamond films to silicon nitride substrate is the firmest due to the formation of chemical combination of the SiC intermediate layer in the interfaces. In the piston-turning application, the diamond-coated Si3N4 ceramic and the cemented carbide cutting tools usually fail in the form of collapsing of edge and cracking or flaking respectively. They have no built-up edge(BUE) as long as coating is intact.As it wears through, BUE develops and the cutting force on it increases 1 - 3 times than that prior to failure. This can predict the failure of diamond-coated cutting tools.
基金Funded by the National High-Tech R&D Program(863 Program)of China(No.2012AA040405)
文摘We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning.
基金supported by the Special Actions for Developing High-performance Manufacturing of Ministry of Industry and Information Technology(Grant No.:TC200H02J)the Research Grants Council of the Hong Kong Special Ad-ministrative Region,China(Project No.:PolyU 152125/18E)+1 种基金the National Natural Science Foundation of China(Project No.:U19A20104)the Research Committee of The Hong Kong Polytechnic University(Project Code G-RK2V).
文摘The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.