A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a...A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.展开更多
A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder ca...A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder cannot distinguish between train charging current and remote short circuit current.This method uses the principle of energy difference to optimize the optimal mode decomposition number k of VMD;the optimal VMD for DC feeder current is decomposed into the intrinsic modal function(IMF)of different frequency bands.The sample entropy algorithm is used to perform feature extraction of each IMF,and then the eigenvalues of the intrinsic modal function of each frequency band of the current signal can be obtained.The recognition feature vector is input into the support vector machine model based on Bayesian hyperparameter optimization for training.After a large number of experimental data are verified,it is found that the optimal VMD_SampEn algorithm to identify the train charging current and remote short circuit current is more accurate than other algorithms.Thus,the algorithm based on optimized VMD_SampEn has certain engineering application value in the fault current identification of the DC traction feeder.展开更多
This paper introduces the Particle SwarmOptimization(PSO)algorithmto enhance the LatinHypercube Sampling(LHS)process.The key objective is to mitigate the issues of lengthy computation times and low computational accur...This paper introduces the Particle SwarmOptimization(PSO)algorithmto enhance the LatinHypercube Sampling(LHS)process.The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation(MCS)to LHS for probabilistic trend calculations.The PSOmethod optimizes sample distribution,enhances global search capabilities,and significantly boosts computational efficiency.To validate its effectiveness,the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power.The performance was then compared with Latin Hypercubic Important Sampling(LHIS),which integrates significant sampling with theMonte Carlomethod.The comparison results indicate that the PSO-enhanced method significantly improves the uniformity and representativeness of the sampling.This enhancement leads to a reduction in data errors and an improvement in both computational accuracy and convergence speed.展开更多
Aiming at piezoresistive pressure sensors, this paper studies simulation of standard pressure by using benchmark current source and self-calibration of the sampling data characteristics. A data fusion algorithm for sa...Aiming at piezoresistive pressure sensors, this paper studies simulation of standard pressure by using benchmark current source and self-calibration of the sampling data characteristics. A data fusion algorithm for sample set is presented which transforms a surface problem into a curve fitting and interpolation problem. The simulation result shows that benchmark current source simulating pressure is successful and data fusion algorithm is effective. The maximum measurement error is only 0.098 kPa and maximum relative error is 0.92% at 0-45 kPa and -10-45~C.展开更多
The torque output in a permanent magnet brushless DC motor (BLDCM) is usually controlled by regulating the motor phase currents. In this paper, three kinds of PWM strategies together with some critical review on trad...The torque output in a permanent magnet brushless DC motor (BLDCM) is usually controlled by regulating the motor phase currents. In this paper, three kinds of PWM strategies together with some critical review on traditional current measurements in a BLDCM drive system are discussed. A novel method for assessing the PWM information and measuring the motor phase currents by a dc link current sensor is proposed. An attractive feature of the proposed method is the simplicity with the current sample processing because there is no need to incorporate the conduction information of the power switches or diodes. Only the single sided PWM or the double sided complementary PWM is needed with the proposed technique.展开更多
针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用...针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。展开更多
An LED driving circuit in accurate proportional current sampling mode is designed and fabricated based on CSMC 0.5 μm standard CMOS technology. It realizes accurate sensing of sampling current variation with output d...An LED driving circuit in accurate proportional current sampling mode is designed and fabricated based on CSMC 0.5 μm standard CMOS technology. It realizes accurate sensing of sampling current variation with output driving current. A better constant output current characteristic is achieved by using an amplifier to clamp the drain voltage of both the sampling MOSFET and power MOSFET to the same value with feedback control. Small signal equivalent circuit analysis shows that the small signal output resistance in the accurate proportional current sampling mode circuit is much larger than that in a traditional proportional current sampling mode circuit, and circuit stability could be assured. Circuit simulation and chip testing results show that when the LED driving current is 350 mA and the power supply is 6 V with ± 10% variation, the stability of the output constant current of the accurate proportional current sampling mode LED driving IC will show 41% improvement over that of a traditional proportional current sampling mode LED driving IC.展开更多
文摘A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.
基金This project supported by The National Natural Science Foundation of China(No.11872253).
文摘A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder cannot distinguish between train charging current and remote short circuit current.This method uses the principle of energy difference to optimize the optimal mode decomposition number k of VMD;the optimal VMD for DC feeder current is decomposed into the intrinsic modal function(IMF)of different frequency bands.The sample entropy algorithm is used to perform feature extraction of each IMF,and then the eigenvalues of the intrinsic modal function of each frequency band of the current signal can be obtained.The recognition feature vector is input into the support vector machine model based on Bayesian hyperparameter optimization for training.After a large number of experimental data are verified,it is found that the optimal VMD_SampEn algorithm to identify the train charging current and remote short circuit current is more accurate than other algorithms.Thus,the algorithm based on optimized VMD_SampEn has certain engineering application value in the fault current identification of the DC traction feeder.
文摘This paper introduces the Particle SwarmOptimization(PSO)algorithmto enhance the LatinHypercube Sampling(LHS)process.The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation(MCS)to LHS for probabilistic trend calculations.The PSOmethod optimizes sample distribution,enhances global search capabilities,and significantly boosts computational efficiency.To validate its effectiveness,the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power.The performance was then compared with Latin Hypercubic Important Sampling(LHIS),which integrates significant sampling with theMonte Carlomethod.The comparison results indicate that the PSO-enhanced method significantly improves the uniformity and representativeness of the sampling.This enhancement leads to a reduction in data errors and an improvement in both computational accuracy and convergence speed.
基金Project supported by the National Natural Science Foundation of China (Grant No.40265001), and the Science Foundation of Yunnan Province (Grant No.2002C0038M)
文摘Aiming at piezoresistive pressure sensors, this paper studies simulation of standard pressure by using benchmark current source and self-calibration of the sampling data characteristics. A data fusion algorithm for sample set is presented which transforms a surface problem into a curve fitting and interpolation problem. The simulation result shows that benchmark current source simulating pressure is successful and data fusion algorithm is effective. The maximum measurement error is only 0.098 kPa and maximum relative error is 0.92% at 0-45 kPa and -10-45~C.
文摘The torque output in a permanent magnet brushless DC motor (BLDCM) is usually controlled by regulating the motor phase currents. In this paper, three kinds of PWM strategies together with some critical review on traditional current measurements in a BLDCM drive system are discussed. A novel method for assessing the PWM information and measuring the motor phase currents by a dc link current sensor is proposed. An attractive feature of the proposed method is the simplicity with the current sample processing because there is no need to incorporate the conduction information of the power switches or diodes. Only the single sided PWM or the double sided complementary PWM is needed with the proposed technique.
文摘针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。
基金supported by the High Efficacy Energy-Saving Project of Zhejiang Province China(No.2006C11007).
文摘An LED driving circuit in accurate proportional current sampling mode is designed and fabricated based on CSMC 0.5 μm standard CMOS technology. It realizes accurate sensing of sampling current variation with output driving current. A better constant output current characteristic is achieved by using an amplifier to clamp the drain voltage of both the sampling MOSFET and power MOSFET to the same value with feedback control. Small signal equivalent circuit analysis shows that the small signal output resistance in the accurate proportional current sampling mode circuit is much larger than that in a traditional proportional current sampling mode circuit, and circuit stability could be assured. Circuit simulation and chip testing results show that when the LED driving current is 350 mA and the power supply is 6 V with ± 10% variation, the stability of the output constant current of the accurate proportional current sampling mode LED driving IC will show 41% improvement over that of a traditional proportional current sampling mode LED driving IC.