A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da...A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.展开更多
In view of DC speed control system, this paper presents a predictive control algorithm to replace traditional PID control. System predictive model requires little information of the controlled object, and because it...In view of DC speed control system, this paper presents a predictive control algorithm to replace traditional PID control. System predictive model requires little information of the controlled object, and because it adopts rolling optimum method, system展开更多
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ...This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.展开更多
According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated ...According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.展开更多
A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid el...A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.展开更多
Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail...Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail train,which directly affects the performance and safety of train operation and impacts passenger comfort.The braking performance of urban rail trains is directly related to the improvement of train speed and transportation capacity.Also,urban rail transit has the characteristics of high speed,short station distance,frequent starting,and frequent braking.This makes the braking control system constitute a time-varying,time-delaying and nonlinear control system,especially the braking force changes directly disturb the parking accuracy and comfort.To solve these issues,a predictive control algorithm based on T-S fuzzy model was proposed and applied to the train braking control system.Compared with the traditional PID control algorithm and self-adaptive fuzzy PID control algorithm,the braking capacity of urban rail train was improved by 8%.The algorithm can achieve fast and accurate synchronous braking,thereby overcoming the dynamic influence of the uncertainty,hysteresis and time-varying factors of the controlled object.Finally,the desired control objectives can be achieved,the system will have superior robustness,stability and comfort.展开更多
In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)i...In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.展开更多
Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the stru...Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).展开更多
Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Pred...Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Predictive Control algorithm (NMPC) for semi-active landing gears is developed in this paper. The NMPC algorithm uses Genetic Algorithm (GA) as the optimization technique and chooses damping performance of landing gear at touch down to be the optimization object. The valve's rate and magnitude limitations are also considered in the controller's design. A simulation model is built for the semi-active landing gear's damping process at touchdown. Drop tests are carried out on an experimental passive landing gear systerm to validate the parameters of the simulation model. The result of numerical simulation shows that the isolation of impact load at touchdown can be significantly improved compared to other control algorithms. The strongly nonlinear dynamics of semi-active landing gear coupled with control valve's rate and magnitude limitations are handled well with the proposed controller.展开更多
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular wa...This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves’ behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method’s efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.展开更多
This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method ...This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.展开更多
Based on the characteristics of nonlinearity,multi-case,and multi-disturbance,it is difficult to establish an accurate parameter mod-el on the hydraulic turbine system which is limited by the degree of fitting between...Based on the characteristics of nonlinearity,multi-case,and multi-disturbance,it is difficult to establish an accurate parameter mod-el on the hydraulic turbine system which is limited by the degree of fitting between parametric model and actual model,and the design of con-trol algorithm has a certain degree of limitation.Aiming at the modeling and control problems of hydraulic turbine system,this paper proposes hydraulic turbine system identification and predictive control based on genetic algorithm-simulate anneal and back propagation neural network(GASA-BPNN),and the output value predicted by GASA-BPNN model is fed back to the nonlinear optimizer to output the control quantity.The results show that the output speed of the traditional control system increases greatly and the speed of regulation is slow,while the speed of GASA-BPNN predictive control system increases little and the regulation speed is obviously faster than that of the traditional control system.Compared with the output response of the traditional control of the hydraulic turbine governing system,the neural network predictive control-ler used in this paper has better effect and stronger robustness,solves the problem of poor generalization ability and identification accuracy of the turbine system under variable conditions,and achieves better control effect.展开更多
The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has a...The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has acquired extensive applications in various industries. In this study, MPC is applied to the process for separating ethanol, n-propanol, and n-butanol ternary mixture in a fully thermally coupled DWC. Both composition control and tem- perature inferent/al control are considered. The multiobjective genetic algor/thm function "gamult/obj" in Matlab is used for the weight tuning of MPC. Comparisons are made between the control performances of MPC and PI strategies. Simulation results show that although both MPC and PI schemes can stabilize the DWC in case of feed disturbances, MPC generally behaves better than the PI strategy for both composition control and tempera- ture inferential control, resulting in a more stable and superior performance with lower values of integral of squared error (ISE).展开更多
This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of w...This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect.展开更多
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper...This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.展开更多
This paper presents an extended model predictive controller for maximizing the absorbed power of a point absorber wave energy converter. Owing to the great influence of controller parameters upon the absorbed power, t...This paper presents an extended model predictive controller for maximizing the absorbed power of a point absorber wave energy converter. Owing to the great influence of controller parameters upon the absorbed power, the optimization of these parameters is carried out for the first time by a firefly algorithm(FA). Error, the difference between output velocity of buoy and input wave speed which leads to power maximization in the optimized MPC is compared with the classical MPC. Simulation results indicate that given the high accuracy and acceptable speed of the algorithm, it can adjust the parameters of the controller to the point where system error decreased effectively and the absorbed energy increased about 4 MW.展开更多
This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorith...This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.展开更多
A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model P...A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model Predictive Controller(MPC)design.MPC predicts the future trajectory of the dynamic model by calculating the optimal closed loop feedback gain matrix.In this paper,the optimal closed loop feedback gain matrix was calculated using Kautz function.Being an Orthonormal Basis Function(OBF),Kautz function has an advantage of solving complex pole-based nonlinear system.Genetic Algorithm(GA)was applied to optimally tune the Kautz function-based MPC.A constraint based on phase plane analysis was implemented with the cost function in order to improve the robustness of the Kautz function-based MPC.The proposed method was simulated with three area interconnected power system and the efficiency of the proposed method was measured and exhibited by comparing with conventional Proportional and Integral(PI)controller and Linear Quadratic Regulation(LQR).展开更多
文摘A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.
文摘In view of DC speed control system, this paper presents a predictive control algorithm to replace traditional PID control. System predictive model requires little information of the controlled object, and because it adopts rolling optimum method, system
基金Supported by the National Natural Science Foundation of China(21076179)the National Basic Research Program of China(2012CB720500)
文摘This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.
基金supported by the Chongqing Scientific and Technological Innovating Program under grant CSTC2008AC1014
文摘According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant Nos.172102210124,202102210269the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.
基金This work was supported by the Youth Backbone Teachers Training Program of Henan colleges and universities under Grant No.2016ggjs-287(W.X.K.,http://jyt.henan.gov.cn/)the Project of Science and Technology of Henan province under Grant Nos.172102210124 and 202102210269(W.X.K.,http://www.hnkjt.gov.cn/)the Key Scientific Research Projects in Colleges and Universities in Henan Grant No.18B460003(W.X.K.,http://jyt.henan.gov.cn/)
文摘Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail train,which directly affects the performance and safety of train operation and impacts passenger comfort.The braking performance of urban rail trains is directly related to the improvement of train speed and transportation capacity.Also,urban rail transit has the characteristics of high speed,short station distance,frequent starting,and frequent braking.This makes the braking control system constitute a time-varying,time-delaying and nonlinear control system,especially the braking force changes directly disturb the parking accuracy and comfort.To solve these issues,a predictive control algorithm based on T-S fuzzy model was proposed and applied to the train braking control system.Compared with the traditional PID control algorithm and self-adaptive fuzzy PID control algorithm,the braking capacity of urban rail train was improved by 8%.The algorithm can achieve fast and accurate synchronous braking,thereby overcoming the dynamic influence of the uncertainty,hysteresis and time-varying factors of the controlled object.Finally,the desired control objectives can be achieved,the system will have superior robustness,stability and comfort.
基金National Natural Science Foundation of China(Nos.51767013,52067013)。
文摘In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.
基金National Science Foundation of U.S.A.under grant CMS-9503533
文摘Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).
基金Aeronautical Science Foundation of China (98B52023), (04B52012)
文摘Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Predictive Control algorithm (NMPC) for semi-active landing gears is developed in this paper. The NMPC algorithm uses Genetic Algorithm (GA) as the optimization technique and chooses damping performance of landing gear at touch down to be the optimization object. The valve's rate and magnitude limitations are also considered in the controller's design. A simulation model is built for the semi-active landing gear's damping process at touchdown. Drop tests are carried out on an experimental passive landing gear systerm to validate the parameters of the simulation model. The result of numerical simulation shows that the isolation of impact load at touchdown can be significantly improved compared to other control algorithms. The strongly nonlinear dynamics of semi-active landing gear coupled with control valve's rate and magnitude limitations are handled well with the proposed controller.
文摘This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves’ behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method’s efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.
基金Projects(61573052,61273132)supported by the National Natural Science Foundation of China
文摘This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.
基金This work was financially supported by the Fundamental Research Funds for the Central Universities,China(No.2020YJSJD15)the Ministry of industry and Information Technology of the China:Plateau hydro turbine construction project.
文摘Based on the characteristics of nonlinearity,multi-case,and multi-disturbance,it is difficult to establish an accurate parameter mod-el on the hydraulic turbine system which is limited by the degree of fitting between parametric model and actual model,and the design of con-trol algorithm has a certain degree of limitation.Aiming at the modeling and control problems of hydraulic turbine system,this paper proposes hydraulic turbine system identification and predictive control based on genetic algorithm-simulate anneal and back propagation neural network(GASA-BPNN),and the output value predicted by GASA-BPNN model is fed back to the nonlinear optimizer to output the control quantity.The results show that the output speed of the traditional control system increases greatly and the speed of regulation is slow,while the speed of GASA-BPNN predictive control system increases little and the regulation speed is obviously faster than that of the traditional control system.Compared with the output response of the traditional control of the hydraulic turbine governing system,the neural network predictive control-ler used in this paper has better effect and stronger robustness,solves the problem of poor generalization ability and identification accuracy of the turbine system under variable conditions,and achieves better control effect.
基金Supported by the National Natural Science Foundation of China(21676299,21476261and 21606255)
文摘The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has acquired extensive applications in various industries. In this study, MPC is applied to the process for separating ethanol, n-propanol, and n-butanol ternary mixture in a fully thermally coupled DWC. Both composition control and tem- perature inferent/al control are considered. The multiobjective genetic algor/thm function "gamult/obj" in Matlab is used for the weight tuning of MPC. Comparisons are made between the control performances of MPC and PI strategies. Simulation results show that although both MPC and PI schemes can stabilize the DWC in case of feed disturbances, MPC generally behaves better than the PI strategy for both composition control and tempera- ture inferential control, resulting in a more stable and superior performance with lower values of integral of squared error (ISE).
基金supported by National Natural Science Foundation of China(61403254,61374039,61203143)Shanghai Pujiang Program(13PJ1406300)+2 种基金Natural Science Foundation of Shanghai City(13ZR1428500)Innovation Program of Shanghai Municipal Education Commission(14YZ083)Hujiang Foundation of China(C14002,B1402/D1402)
基金the Key Research&Development Program of Xinjiang(Grant Number 2022B01003).
文摘This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect.
基金Project supported by the CMEP-TASSILI Project(Grant No.14MDU920)
文摘This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.
文摘This paper presents an extended model predictive controller for maximizing the absorbed power of a point absorber wave energy converter. Owing to the great influence of controller parameters upon the absorbed power, the optimization of these parameters is carried out for the first time by a firefly algorithm(FA). Error, the difference between output velocity of buoy and input wave speed which leads to power maximization in the optimized MPC is compared with the classical MPC. Simulation results indicate that given the high accuracy and acceptable speed of the algorithm, it can adjust the parameters of the controller to the point where system error decreased effectively and the absorbed energy increased about 4 MW.
基金Supported by the National 863 CIMS Project Foundation(863-511-010)Tianjin Natural Science Foundation(983602011)Backbone Young Teacher Project Foundation of Ministry of Education
文摘This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.
文摘A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model Predictive Controller(MPC)design.MPC predicts the future trajectory of the dynamic model by calculating the optimal closed loop feedback gain matrix.In this paper,the optimal closed loop feedback gain matrix was calculated using Kautz function.Being an Orthonormal Basis Function(OBF),Kautz function has an advantage of solving complex pole-based nonlinear system.Genetic Algorithm(GA)was applied to optimally tune the Kautz function-based MPC.A constraint based on phase plane analysis was implemented with the cost function in order to improve the robustness of the Kautz function-based MPC.The proposed method was simulated with three area interconnected power system and the efficiency of the proposed method was measured and exhibited by comparing with conventional Proportional and Integral(PI)controller and Linear Quadratic Regulation(LQR).