In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz and Ambrosetti-Coti Zelati with (PSC)c type condition of Palais-Smale-Cerami to study the existence of new periodic solut...In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz and Ambrosetti-Coti Zelati with (PSC)c type condition of Palais-Smale-Cerami to study the existence of new periodic solutions with a prescribed energy for symmetrical singular second order Hamiltonian conservative systems with weak force type potentials.展开更多
The symmetry of singular Hamiltonian differential operators is proved under the standard "definiteness condition", which is strictly weaker than the densely definite condition used by A. M. Krall. Meanwhile, some pr...The symmetry of singular Hamiltonian differential operators is proved under the standard "definiteness condition", which is strictly weaker than the densely definite condition used by A. M. Krall. Meanwhile, some properties of deficiency indices are given.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11071175)National Research Foundation for the Doctoral Program of Ministry of Education of China
文摘In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz and Ambrosetti-Coti Zelati with (PSC)c type condition of Palais-Smale-Cerami to study the existence of new periodic solutions with a prescribed energy for symmetrical singular second order Hamiltonian conservative systems with weak force type potentials.
基金This work is supported by Ningbo Doctoral Science Foundation (No. 2004A620018)
文摘The symmetry of singular Hamiltonian differential operators is proved under the standard "definiteness condition", which is strictly weaker than the densely definite condition used by A. M. Krall. Meanwhile, some properties of deficiency indices are given.