This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
Making use of upper and lower solutions and analytical method, the author studies theexistence of positive solution for the singular equation x + f(t, z) = 0 satisfying nonlinear boundary conditions: x (0) = 0, h(x (1...Making use of upper and lower solutions and analytical method, the author studies theexistence of positive solution for the singular equation x + f(t, z) = 0 satisfying nonlinear boundary conditions: x (0) = 0, h(x (1), x’ (1)) = 0, g (z (0), x’(0)) = 0, and x (1) = 0,which extends the result of J. V. Baxley.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
The singular boundary value problem{φ^(4)(x)-h(x)f(φ(x))=0,0〈x〈1, φ(0)=φ(1)=φ′(0)=φ′(1)=0.is considered under some conditions concerning the first eigenvaiues corresponding to the relevant ...The singular boundary value problem{φ^(4)(x)-h(x)f(φ(x))=0,0〈x〈1, φ(0)=φ(1)=φ′(0)=φ′(1)=0.is considered under some conditions concerning the first eigenvaiues corresponding to the relevant linear operators, where h(x) is allowed to be singular at both x = 0 and x = 1. The existence results of positive solutions are obtained by means of the cone theory and the fixed point index.展开更多
In this paper, we establish the existence of positive solutions of (|y'| p-2g' )'+f(t,y)= 0 (P>1 ). y (0)=y (1) = 0. The function f is allowed to be singular when y= 0.
This paper investigates existence of positive solutions of singular sub-linear boundary value problems on a half-line. Necessary and sufficient conditions for the existence of positive continuous solutions or smooth s...This paper investigates existence of positive solutions of singular sub-linear boundary value problems on a half-line. Necessary and sufficient conditions for the existence of positive continuous solutions or smooth solutions on [0, ∞] are given by constructing new lower and upper solutions.展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1...1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1 we can get the radial solutions of problem where 2*=2N/N-2 is the critical exponent of the Sobolev embedding H1(Rn)→LQ(RN). Kurtz has discussed the existence of κ-node solution of (1.1), (1.2) for each κ∈N U{0} when the growth rate of |u|l-1u+f(u) is lower then |u|v+3/v-1 i.e.展开更多
This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the mo...This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the monotone iterative technique.Furthermore,the uniqueness of the C3 positive solution,and the iterative sequence of the C3 positive solution are also obtained.展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
A class of singularly perturbed boundary value problems arising from the catalytic reactions in chemical engineering is observed. That kind of p roblems exhibits the behavior of nonexponentially decayed boundary la...A class of singularly perturbed boundary value problems arising from the catalytic reactions in chemical engineering is observed. That kind of p roblems exhibits the behavior of nonexponentially decayed boundary layer, and he nce the study of asymptotic behavior of their solutions seems more diffcult. The uniformly valid asymptotic expansions of solutions as well as their derivatives are given via the upper and lower solutions method, and those estimates seem qu ite accurate.展开更多
In this paper we study the singularly penurbed boundary value problem: where e is a positive small parameter In the conditions: we prove the existences, and uniformly valid asymptotic expansions of solutions for the g...In this paper we study the singularly penurbed boundary value problem: where e is a positive small parameter In the conditions: we prove the existences, and uniformly valid asymptotic expansions of solutions for the given boundary value problems, and hence we improve the existing results.展开更多
We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The ac...We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
An efficient analytical decomposition technique was presented for solving the singular nonlinear boundary value problem arising in viscous flow when the Crocco variable was introduced. The approximate analytical solut...An efficient analytical decomposition technique was presented for solving the singular nonlinear boundary value problem arising in viscous flow when the Crocco variable was introduced. The approximate analytical solution may be represented in terms of a rapid convergent power series with elegantly computable terms. The reliability and efficiency of the approximate solutions were verified by numerical ones in the literature. The approximate analytical solutions can be successfully applied to give the values of skin friction coefficient.展开更多
We consider the singular Dirichlet problem for the Monge-Ampère type equation{\rm det}\D^2 u=b(x)g(-u)(1+|\nabla u|^2)^{q/2},\u<0,\x\in\Omega,\u|_{\partial\Omega}=0,whereΩis a strictly convex and bounded smoo...We consider the singular Dirichlet problem for the Monge-Ampère type equation{\rm det}\D^2 u=b(x)g(-u)(1+|\nabla u|^2)^{q/2},\u<0,\x\in\Omega,\u|_{\partial\Omega}=0,whereΩis a strictly convex and bounded smooth domain inℝn,q∈[0,n+1),g∈C∞(0,∞)is positive and strictly decreasing in(0,∞)with\lim\limits_{s\rightarrow 0^+}g(s)=\infty,and b∈C∞(Ω)is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.展开更多
文摘This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.
文摘Making use of upper and lower solutions and analytical method, the author studies theexistence of positive solution for the singular equation x + f(t, z) = 0 satisfying nonlinear boundary conditions: x (0) = 0, h(x (1), x’ (1)) = 0, g (z (0), x’(0)) = 0, and x (1) = 0,which extends the result of J. V. Baxley.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
基金the National Natural Science Foundation of China (No. 10671167) the Chunlei Program of SDUST (No. 2008AZZ044).
文摘The singular boundary value problem{φ^(4)(x)-h(x)f(φ(x))=0,0〈x〈1, φ(0)=φ(1)=φ′(0)=φ′(1)=0.is considered under some conditions concerning the first eigenvaiues corresponding to the relevant linear operators, where h(x) is allowed to be singular at both x = 0 and x = 1. The existence results of positive solutions are obtained by means of the cone theory and the fixed point index.
文摘In this paper, we establish the existence of positive solutions of (|y'| p-2g' )'+f(t,y)= 0 (P>1 ). y (0)=y (1) = 0. The function f is allowed to be singular when y= 0.
基金Project supported by Natural Science Foundation of Shandong Province of China(Z2000A02,Y2001A03)and the Excellent Middle-Young Scientists Scientific Research Award Foundation of Shandong Province of China(02BS119)and Foundation of Education Department of
文摘An existence theorem of two positive solutions of the singular BVPwas established by using topological degree theory.
文摘This paper investigates existence of positive solutions of singular sub-linear boundary value problems on a half-line. Necessary and sufficient conditions for the existence of positive continuous solutions or smooth solutions on [0, ∞] are given by constructing new lower and upper solutions.
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
文摘1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1 we can get the radial solutions of problem where 2*=2N/N-2 is the critical exponent of the Sobolev embedding H1(Rn)→LQ(RN). Kurtz has discussed the existence of κ-node solution of (1.1), (1.2) for each κ∈N U{0} when the growth rate of |u|l-1u+f(u) is lower then |u|v+3/v-1 i.e.
文摘This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the monotone iterative technique.Furthermore,the uniqueness of the C3 positive solution,and the iterative sequence of the C3 positive solution are also obtained.
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
文摘A class of singularly perturbed boundary value problems arising from the catalytic reactions in chemical engineering is observed. That kind of p roblems exhibits the behavior of nonexponentially decayed boundary layer, and he nce the study of asymptotic behavior of their solutions seems more diffcult. The uniformly valid asymptotic expansions of solutions as well as their derivatives are given via the upper and lower solutions method, and those estimates seem qu ite accurate.
文摘In this paper we study the singularly penurbed boundary value problem: where e is a positive small parameter In the conditions: we prove the existences, and uniformly valid asymptotic expansions of solutions for the given boundary value problems, and hence we improve the existing results.
文摘We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
基金The work was financially supported by the National Natural Science Foundation of China (No.50476083) and the Cross-CenturyTalents Projects of the Educational Ministry of China.
文摘An efficient analytical decomposition technique was presented for solving the singular nonlinear boundary value problem arising in viscous flow when the Crocco variable was introduced. The approximate analytical solution may be represented in terms of a rapid convergent power series with elegantly computable terms. The reliability and efficiency of the approximate solutions were verified by numerical ones in the literature. The approximate analytical solutions can be successfully applied to give the values of skin friction coefficient.
基金supported by Shandong Provincial NSF(ZR2022MA020).
文摘We consider the singular Dirichlet problem for the Monge-Ampère type equation{\rm det}\D^2 u=b(x)g(-u)(1+|\nabla u|^2)^{q/2},\u<0,\x\in\Omega,\u|_{\partial\Omega}=0,whereΩis a strictly convex and bounded smooth domain inℝn,q∈[0,n+1),g∈C∞(0,∞)is positive and strictly decreasing in(0,∞)with\lim\limits_{s\rightarrow 0^+}g(s)=\infty,and b∈C∞(Ω)is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.