In this work, we are concerned with the existence and multiplicity of positive solutions for singular boundary value problems on the half-line. Two problems from epi- demiology and combustion theory set on the positiv...In this work, we are concerned with the existence and multiplicity of positive solutions for singular boundary value problems on the half-line. Two problems from epi- demiology and combustion theory set on the positive half-line are investigated upper and lower solution techniques combined with fixed point index on cones in priate Banach spaces. The results complement recent ones in the literature. We use appropriate Banach spaces. The results complement recent ones in the literature.展开更多
In this paper, we study the existence result for degenerate elliptic equations with singular potential and critical cone sobolev exponents on singular manifolds. With the help of the variational method and the theory ...In this paper, we study the existence result for degenerate elliptic equations with singular potential and critical cone sobolev exponents on singular manifolds. With the help of the variational method and the theory of genus, we obtain several results under different conditions.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
In this article, the author is devoted to establish the multiplicity of positive periodic solutions to second-order singular differential systems. It is proved that such a problem has at least two positive solutions u...In this article, the author is devoted to establish the multiplicity of positive periodic solutions to second-order singular differential systems. It is proved that such a problem has at least two positive solutions under our reasonable conditions. The proof relies on a nonlinear alternative of Leray- Schauder type and Krasnoselskii fixed point theorem in cones.展开更多
In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theo...In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theorem in cones. We deal with more general nonlinear term than those in the literature.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point ...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
In this paper, we investigate the existence of positive solutions for the singular fourth-order differential system <em>u</em><sup>(4)</sup> = <em><span style="white-space:nowrap;...In this paper, we investigate the existence of positive solutions for the singular fourth-order differential system <em>u</em><sup>(4)</sup> = <em><span style="white-space:nowrap;">φ</span>u</em> + <em>f </em>(<em>t</em>, <em>u</em>, <em>u</em>”, <em><span style="white-space:nowrap;">φ</span></em>), 0 < <em>t</em> < 1, -<em><span style="white-space:nowrap;">φ</span></em>” = <em>μg</em> (<em>t</em>, <em>u</em>, <em>u</em>”), 0 < <em>t</em> < 1, <em>u</em> (0) = <em>u</em> (1) = <em>u</em>”(0) = <em>u</em>”(1) = 0, <em><span style="white-space:nowrap;">φ</span> </em>(0) = <em><span style="white-space:nowrap;">φ</span> </em>(1) = 0;where <em>μ</em> > 0 is a constant, and the nonlinear terms<em> f</em>, <em>g</em> may be singular with respect to both the time and space variables. The results obtained herein generalize and improve some known results including singular and non-singular cases.展开更多
文摘In this work, we are concerned with the existence and multiplicity of positive solutions for singular boundary value problems on the half-line. Two problems from epi- demiology and combustion theory set on the positive half-line are investigated upper and lower solution techniques combined with fixed point index on cones in priate Banach spaces. The results complement recent ones in the literature. We use appropriate Banach spaces. The results complement recent ones in the literature.
文摘In this paper, we study the existence result for degenerate elliptic equations with singular potential and critical cone sobolev exponents on singular manifolds. With the help of the variational method and the theory of genus, we obtain several results under different conditions.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
基金The work was supported by science fundation for young teachers of Northeast Normal University (20060108).
文摘In this article, the author is devoted to establish the multiplicity of positive periodic solutions to second-order singular differential systems. It is proved that such a problem has at least two positive solutions under our reasonable conditions. The proof relies on a nonlinear alternative of Leray- Schauder type and Krasnoselskii fixed point theorem in cones.
基金supported by the Key Program of Scientific Research Fund for Young Teachers of AUST(QN2018109)the National Natural Science Foundation of China(11801008)+1 种基金supported by the Fundamental Research Funds for the Central Universities(2017B715X14)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX17_0508)
文摘In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theorem in cones. We deal with more general nonlinear term than those in the literature.
基金supported by the National Nature Science Foundation of China (10671167)
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
文摘In this paper, we investigate the existence of positive solutions for the singular fourth-order differential system <em>u</em><sup>(4)</sup> = <em><span style="white-space:nowrap;">φ</span>u</em> + <em>f </em>(<em>t</em>, <em>u</em>, <em>u</em>”, <em><span style="white-space:nowrap;">φ</span></em>), 0 < <em>t</em> < 1, -<em><span style="white-space:nowrap;">φ</span></em>” = <em>μg</em> (<em>t</em>, <em>u</em>, <em>u</em>”), 0 < <em>t</em> < 1, <em>u</em> (0) = <em>u</em> (1) = <em>u</em>”(0) = <em>u</em>”(1) = 0, <em><span style="white-space:nowrap;">φ</span> </em>(0) = <em><span style="white-space:nowrap;">φ</span> </em>(1) = 0;where <em>μ</em> > 0 is a constant, and the nonlinear terms<em> f</em>, <em>g</em> may be singular with respect to both the time and space variables. The results obtained herein generalize and improve some known results including singular and non-singular cases.