We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating s...We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.展开更多
In this paper, we will analyze the blow-up behaviors for solutions to the Laplacian equation with exponential Neumann boundary condition. In particular, the boundary value is with a kind of singular data. We show a Br...In this paper, we will analyze the blow-up behaviors for solutions to the Laplacian equation with exponential Neumann boundary condition. In particular, the boundary value is with a kind of singular data. We show a Brezis–Merle type concentration-compactness theorem, calculate the blow up value at the blow-up point, and give a point-wise estimate for the profile of the solution sequence at the blow-up point.展开更多
In this paper, it is considered that the global existence, uniqueness and regularity results for the Cauchy problem of the well-known Kuramoto-Sivashinsky equation [GRAPHICS] only under the condition u(0)(x) is an ele...In this paper, it is considered that the global existence, uniqueness and regularity results for the Cauchy problem of the well-known Kuramoto-Sivashinsky equation [GRAPHICS] only under the condition u(0)(x) is an element of L-2(R-N, R-n). Where u(t, x) = (u(1)(t, x), ..., u(n)(t, x))(T) is the unknown vector-valued function. Results show that for N < 6,.u(0)(x) is an element of L-2(R-N, R-n), the above Cauchy problem admits a unique global solution u(t, x) which belongs to C-infinity,C-infinity(R-N x (0, infinity)).展开更多
A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the p...A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the principal components and the embedding dimension. Based on the improved SSA iterative interpolation, interpolated test and comparative analysis are carried out to the outgoing longwave radiation daily data. The results show that IQA can find globally optimal parameters to the error curve with local oscillation, and has advantage of fast computing speed. The improved interpolation method is effective in the interpolation of missing data.展开更多
针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法.为解决传统SVT容易忽视数...针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法.为解决传统SVT容易忽视数据先验信息的问题,引入相空间重构算法将原始缺失数据映射到高维空间,利用数据间的关联性和结构特征,为后续数据恢复算法提供先验知识;结合对数与Sigmoid函数构建变步长基础函数,并利用等比项提高前期步长,构建自适应变步长SVT算法,克服传统SVT在大规模数据情况下计算效率低的问题.结合多项公用电力负荷数据集及多种常用电力负荷数据恢复算法进行对比实验分析,结果表明,改进SVT算法可获得更好的数据恢复效果,收敛速度、精度以及稳定性得到提升,具有较强的工程实用性.展开更多
文章利用重力恢复与气候实验卫星(Gravity Recovery and Climate Experiment,GRACE)时变重力场球谐系数文件,联合全球陆面数据同化系统(Global Land Data Assimilation System,GLDAS)水文模型反演安徽省2003—2016年地下水储量的时空变...文章利用重力恢复与气候实验卫星(Gravity Recovery and Climate Experiment,GRACE)时变重力场球谐系数文件,联合全球陆面数据同化系统(Global Land Data Assimilation System,GLDAS)水文模型反演安徽省2003—2016年地下水储量的时空变化。通过奇异谱分析(Singular Spectrum Analysis,SSA)地下水时间序列,结合热带降雨测量任务(Tropical Rainfall Measuring Mission,TRMM)降雨数据对地下水储量变化规律进行分析。结果表明,安徽省地下水储量在2011年和2014年前后发生较大变化,在2003—2011年的变化率为0.37 cm/a,2011—2014年的下降速率为-0.2 cm/a,2014—2016年的增长速率为1.9 cm/a;进一步与降雨数据关联,发现降雨量是影响安徽省地下水储量年际变化和季节性变化的主要因素。在空间上,安徽省呈现自东北向西南逐渐缓和的趋势,最大亏损出现在皖北地区,为-7.52 mm/a,在西南地区的最大盈余达到8.38 mm/a。展开更多
文摘We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.
文摘In this paper, we will analyze the blow-up behaviors for solutions to the Laplacian equation with exponential Neumann boundary condition. In particular, the boundary value is with a kind of singular data. We show a Brezis–Merle type concentration-compactness theorem, calculate the blow up value at the blow-up point, and give a point-wise estimate for the profile of the solution sequence at the blow-up point.
文摘In this paper, it is considered that the global existence, uniqueness and regularity results for the Cauchy problem of the well-known Kuramoto-Sivashinsky equation [GRAPHICS] only under the condition u(0)(x) is an element of L-2(R-N, R-n). Where u(t, x) = (u(1)(t, x), ..., u(n)(t, x))(T) is the unknown vector-valued function. Results show that for N < 6,.u(0)(x) is an element of L-2(R-N, R-n), the above Cauchy problem admits a unique global solution u(t, x) which belongs to C-infinity,C-infinity(R-N x (0, infinity)).
基金the State Key Program for Basic Research of China(No.2007CB816003)the Open Item of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics of China
文摘A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the principal components and the embedding dimension. Based on the improved SSA iterative interpolation, interpolated test and comparative analysis are carried out to the outgoing longwave radiation daily data. The results show that IQA can find globally optimal parameters to the error curve with local oscillation, and has advantage of fast computing speed. The improved interpolation method is effective in the interpolation of missing data.
文摘针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法.为解决传统SVT容易忽视数据先验信息的问题,引入相空间重构算法将原始缺失数据映射到高维空间,利用数据间的关联性和结构特征,为后续数据恢复算法提供先验知识;结合对数与Sigmoid函数构建变步长基础函数,并利用等比项提高前期步长,构建自适应变步长SVT算法,克服传统SVT在大规模数据情况下计算效率低的问题.结合多项公用电力负荷数据集及多种常用电力负荷数据恢复算法进行对比实验分析,结果表明,改进SVT算法可获得更好的数据恢复效果,收敛速度、精度以及稳定性得到提升,具有较强的工程实用性.