We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on ...We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matr...This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.展开更多
In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of...In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.展开更多
In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function...In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.展开更多
Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular syste...Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a high-dimension matrix to compute matrix weights. To reduce the computational burden, a distributed reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of two relatively low-dimension matrices to compute matrix weights. A simulation example shows the effectiveness.展开更多
The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes ...The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.展开更多
Given f being Holder continuous in a region GC. For the Cauchy principal integral where G is a smooth closed contour,lt is established that,if a sequence or smooth closed contours G(n ∈N ) smoothly convergent top,the...Given f being Holder continuous in a region GC. For the Cauchy principal integral where G is a smooth closed contour,lt is established that,if a sequence or smooth closed contours G(n ∈N ) smoothly convergent top,then the corresponding sequence I(Γm,f)is convergent to I (,f). Furthermore,when Γ is approximated by a sequence of complex cubic splines(Γ)interpolatory to Γ,the error is estimated.展开更多
An efficient and accurate method for computing the equilibriurn reduced density matrix is presented for treating open quantum systems characterized by the systern-bath model. The method employs the rnultilayer nmltico...An efficient and accurate method for computing the equilibriurn reduced density matrix is presented for treating open quantum systems characterized by the systern-bath model. The method employs the rnultilayer nmlticonfiguration tirne-dependent Hartree theory for imag- inary time propagation and an importance sampling procedure for calculating the quantum mechanical trace. The method is applied to the spin-boson Harniltonian, which leads to ac- curate results in agreement with those produced by the rnulti-electronic-state path integral molecular dynamics method.展开更多
In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity an...In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).展开更多
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a...In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.展开更多
China should pilot renewable energy integration policies similar to those adopted in Germany and Texas in the Beijing-Tianjin-Hebei region to transmit excess energy and reduce wasted wind power.Renewable energy integr...China should pilot renewable energy integration policies similar to those adopted in Germany and Texas in the Beijing-Tianjin-Hebei region to transmit excess energy and reduce wasted wind power.Renewable energy integration will be fundamental to China?s transition to a low-carbon economy.Although China now leads the world in terms展开更多
The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field ...The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.展开更多
Boundedness of multilinear singular integrals and their commutators from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces are obtained. The vector-valued case is also considered.
Let T be a singular integral operator bounded on Lp(Rn) for some p, 1 < p < ∞. The authors give a sufficient condition on the kernel of T so that when b ∈BMO, the commutator [b,T](f) = T(bf) - bT(f) is bounded...Let T be a singular integral operator bounded on Lp(Rn) for some p, 1 < p < ∞. The authors give a sufficient condition on the kernel of T so that when b ∈BMO, the commutator [b,T](f) = T(bf) - bT(f) is bounded on the space Lp for all p, 1 < p < ∞. The condition of this paper is weaker than the usual pointwise Hormander condition.展开更多
It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and th...In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.展开更多
On the basis of the Cauchy integral formulas for regular and biregular functions, we define some Cauchy-type singular integral operators. Then we discuss the Holder continuous property of some singular integral operat...On the basis of the Cauchy integral formulas for regular and biregular functions, we define some Cauchy-type singular integral operators. Then we discuss the Holder continuous property of some singular integral operators with one integral variable. Then we divide a singular integral operator with two variables into three parts and prove its Holder continuous property on the boundary.展开更多
基金partially supported by the Fundamental Research Funds for the Central Universities(GK202207018)of China。
文摘We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
基金Project supported by the National Natural Science Foundation of China(No.10672194)the China-Russia Cooperative Project(the National Natural Science Foundation of China and the Russian Foundation for Basic Research)(No.10811120012)
文摘This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.
文摘In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.
文摘In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.
基金Supported by National Natural Science Foundation of P. R. China (60504034) Youth Foundation of Heilongjiang Province (QC04A01) Outstanding Youth Foundation of Heilongjiang University (JC200404)
文摘Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a high-dimension matrix to compute matrix weights. To reduce the computational burden, a distributed reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of two relatively low-dimension matrices to compute matrix weights. A simulation example shows the effectiveness.
基金Work sponsored by"Ministero dell' University"CNR of Italy
文摘The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.
文摘Given f being Holder continuous in a region GC. For the Cauchy principal integral where G is a smooth closed contour,lt is established that,if a sequence or smooth closed contours G(n ∈N ) smoothly convergent top,then the corresponding sequence I(Γm,f)is convergent to I (,f). Furthermore,when Γ is approximated by a sequence of complex cubic splines(Γ)interpolatory to Γ,the error is estimated.
基金supported by the U.S.National Science Foundation CHE-1500285used resources from the National Energy Research Scientific Computing Center,which is supported by the Office of Science of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231+2 种基金supported by the Ministry of Science and Technology of China(No.2017YFA0204901 and No.2016YFC0202803)the National Natural Science Foundation of China(No.21373018 and No.21573007)the Recruitment Program of Global Experts,and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase) under grant No.U1501501
文摘An efficient and accurate method for computing the equilibriurn reduced density matrix is presented for treating open quantum systems characterized by the systern-bath model. The method employs the rnultilayer nmlticonfiguration tirne-dependent Hartree theory for imag- inary time propagation and an importance sampling procedure for calculating the quantum mechanical trace. The method is applied to the spin-boson Harniltonian, which leads to ac- curate results in agreement with those produced by the rnulti-electronic-state path integral molecular dynamics method.
文摘In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).
文摘In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.
文摘China should pilot renewable energy integration policies similar to those adopted in Germany and Texas in the Beijing-Tianjin-Hebei region to transmit excess energy and reduce wasted wind power.Renewable energy integration will be fundamental to China?s transition to a low-carbon economy.Although China now leads the world in terms
基金supported by the National Natural Science Foundation of China (Grant No. 50879090)
文摘The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department (09A058)
文摘Boundedness of multilinear singular integrals and their commutators from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces are obtained. The vector-valued case is also considered.
文摘Let T be a singular integral operator bounded on Lp(Rn) for some p, 1 < p < ∞. The authors give a sufficient condition on the kernel of T so that when b ∈BMO, the commutator [b,T](f) = T(bf) - bT(f) is bounded on the space Lp for all p, 1 < p < ∞. The condition of this paper is weaker than the usual pointwise Hormander condition.
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
基金Foundation item is supported by the NNSF of China(19971064)
文摘In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.
基金Supported by the National Natural Science Foundation of China (10771049, 10801043)the Hebei Natural Science Foundation (A2007000225, A2010000346)
文摘On the basis of the Cauchy integral formulas for regular and biregular functions, we define some Cauchy-type singular integral operators. Then we discuss the Holder continuous property of some singular integral operators with one integral variable. Then we divide a singular integral operator with two variables into three parts and prove its Holder continuous property on the boundary.