A new digital watermarking algorithm based on the contourlet transform is proposed to improve the robustness and anti-attack performances of digital watermarking. The algorithm uses the Arnold scrambling technique and...A new digital watermarking algorithm based on the contourlet transform is proposed to improve the robustness and anti-attack performances of digital watermarking. The algorithm uses the Arnold scrambling technique and the singular value decomposition (SVD) scheme. The Arnold scrambling technique is used to preprocess the watermark, and the SVD scheme is used to find the best suitable hiding points. After the contourlet transform of the carrier image, intermediate frequency sub-bands are decomposed to obtain the singularity values. Then the watermark bits scrambled in the Arnold rules are dispersedly embedded into the selected SVD points. Finally, the inverse contourlet transform is applied to obtain the carrier image with the watermark. In the extraction part, the watermark can be extracted by the semi-blind watermark extracting algorithm. Simulation results show that the proposed algorithm has better hiding and robustness performances than the traditional contourlet watermarking algorithm and the contourlet watermarking algorithm with SVD. Meanwhile, it has good robustness performances when the embedded watermark is attacked by Gaussian noise, salt- and-pepper noise, multiplicative noise, image scaling and image cutting attacks, etc. while security is ensured.展开更多
By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation...By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.展开更多
Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using th...Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using the concept of singular value decomposition entropy (SvdEn) is analyzed. SvdEn is calculated from the time series using normalized singular values. The advantage of this method is its simplicity and fast computation. It enables analysis of very short and non-stationary data sets. The results show that SvdEn of patients with congestive heart failure (CHF) shows a low value (SvdEn: 0.056±0.006, p 〈 0.01) which can be completely separated from healthy subjects. In addition, differences of SvdEn values between day and night are found for the healthy groups. SvdEn decreases with age. The lower the SvdEn values, the higher the risk of heart disease. Moreover, SvdEn is associated with the energy of heart rhythm. The results show that using SvdEn for discriminating HRV in different physiological states for clinical applications is feasible and simple.展开更多
The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material...The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.展开更多
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别...针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。展开更多
A variety of strong MHD instabilities are always resulted from MHD activity of Tokamak plasmas. Central MHD instabilities can be observed with pinhole cameras to record soft x-ray (SXR) emission from the plasma along ...A variety of strong MHD instabilities are always resulted from MHD activity of Tokamak plasmas. Central MHD instabilities can be observed with pinhole cameras to record soft x-ray (SXR) emission from the plasma along many chords with a high temporal resolution. The investigation of MHD instabilities often necessitates an analysis on spatial-temporal signals. The method of Singular Value Decomposition (SVD) can split such signals into orthogonal spatial and temporal vectors. By this means, the repetition time and the characteristic radius of various MHD phenomena such as sawteeth and snake-like perturbation can be obtained. Moreover, the (1,1) MHD mode is analyzed in great detail by SVD and used to determine the radius of the q = 1 surface.展开更多
To solve the homogeneous transformation equation of the form AX=XB in hand-eye calibration, where X represents an unknown transformation from the camera to the robot hand, and A and B denote the known movement transfo...To solve the homogeneous transformation equation of the form AX=XB in hand-eye calibration, where X represents an unknown transformation from the camera to the robot hand, and A and B denote the known movement transformations associated with the robot hand and the camera, respectively, this paper introduces a new linear decomposition algorithm which consists of singular value decomposition followed by the estimation of the optimal rotation matrix and the least squares equation to solve the rotation matrix of X. Without the requirements of traditional methods that A and B be rigid transformations with the same rotation angle, it enables the extension to non-rigid transformations for A and B. The details of our method are given, together with a short discussion of experimental results, showing that more precision and robustness can be achieved.展开更多
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ...Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.展开更多
针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD...针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD分解得到基本模式分量,应用基本模式分量信号来构造Hankel矩阵,对该矩阵进行正交化奇异值(Singular value decomposition,SVD)分解,以奇异值关键叠层作为奇异值的选择准则对信号进行重构,应用重构信号的傅里叶谱来检测高速列车万向轴的动不平衡,消除EEMD分解模式频带重叠对故障特征的淹没和混淆效应,提高了谱的清晰度,凸显了故障特征。应用万向轴动不平衡试验数据对该方法进行试验验证,结果表明,该方法能够有效检测万向轴动不平衡引起的故障特征和万向轴的固有振动特征,与纯EEMD方法相比,该方法在谱的清晰度和故障表征力上得到了显著提高。展开更多
为了解决滚动轴承振动信号中微弱故障信息难以提取的问题,提出了一种基于奇异值分解(Singular Value Decomposition,SVD)和Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)的轴承振动信号特征提取方法。采用SVD将突变信息...为了解决滚动轴承振动信号中微弱故障信息难以提取的问题,提出了一种基于奇异值分解(Singular Value Decomposition,SVD)和Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)的轴承振动信号特征提取方法。采用SVD将突变信息从背景噪声和光滑信号中分离,提取信号的突变信息;利用TKEO计算突变信息的瞬时能量,对该能量信号进行频谱分析,从而提取出轴承振动信号的能量频谱特征,用于故障检测。将该方法应用于轴承外圈、内圈局部故障状态下的振动信号特征提取,利用特征信息能够准确检测并识别出故障类型,表明了该方法的可行性和有效性。展开更多
基金The National Natural Science Foundation of China( No. 69092008)
文摘A new digital watermarking algorithm based on the contourlet transform is proposed to improve the robustness and anti-attack performances of digital watermarking. The algorithm uses the Arnold scrambling technique and the singular value decomposition (SVD) scheme. The Arnold scrambling technique is used to preprocess the watermark, and the SVD scheme is used to find the best suitable hiding points. After the contourlet transform of the carrier image, intermediate frequency sub-bands are decomposed to obtain the singularity values. Then the watermark bits scrambled in the Arnold rules are dispersedly embedded into the selected SVD points. Finally, the inverse contourlet transform is applied to obtain the carrier image with the watermark. In the extraction part, the watermark can be extracted by the semi-blind watermark extracting algorithm. Simulation results show that the proposed algorithm has better hiding and robustness performances than the traditional contourlet watermarking algorithm and the contourlet watermarking algorithm with SVD. Meanwhile, it has good robustness performances when the embedded watermark is attacked by Gaussian noise, salt- and-pepper noise, multiplicative noise, image scaling and image cutting attacks, etc. while security is ensured.
基金Supported by The Special Foundation of Chinese Meteorological Bureau Climate Changes Program(200920)The Special Foundation of Hunan Major Scientific and Technological Research Program(2008FJ1006)~~
文摘By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.
基金Project supported by the National Natural Science Foundation of China (Grant No.30540025)
文摘Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using the concept of singular value decomposition entropy (SvdEn) is analyzed. SvdEn is calculated from the time series using normalized singular values. The advantage of this method is its simplicity and fast computation. It enables analysis of very short and non-stationary data sets. The results show that SvdEn of patients with congestive heart failure (CHF) shows a low value (SvdEn: 0.056±0.006, p 〈 0.01) which can be completely separated from healthy subjects. In addition, differences of SvdEn values between day and night are found for the healthy groups. SvdEn decreases with age. The lower the SvdEn values, the higher the risk of heart disease. Moreover, SvdEn is associated with the energy of heart rhythm. The results show that using SvdEn for discriminating HRV in different physiological states for clinical applications is feasible and simple.
基金National Natural Science Foundation of China(No.61761027)。
文摘The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.
文摘针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。
基金The project supported by the National Nature Science Foundation of China (No. 10075014) and the Tenth-Five-Year Nuclear Energy Development of the Commission of Science Technology and Industry for National Defense, and of the China National Nuclear Corpor
文摘A variety of strong MHD instabilities are always resulted from MHD activity of Tokamak plasmas. Central MHD instabilities can be observed with pinhole cameras to record soft x-ray (SXR) emission from the plasma along many chords with a high temporal resolution. The investigation of MHD instabilities often necessitates an analysis on spatial-temporal signals. The method of Singular Value Decomposition (SVD) can split such signals into orthogonal spatial and temporal vectors. By this means, the repetition time and the characteristic radius of various MHD phenomena such as sawteeth and snake-like perturbation can be obtained. Moreover, the (1,1) MHD mode is analyzed in great detail by SVD and used to determine the radius of the q = 1 surface.
基金Project (No. 60703002) supported by the National Natural Science Foundation of China
文摘To solve the homogeneous transformation equation of the form AX=XB in hand-eye calibration, where X represents an unknown transformation from the camera to the robot hand, and A and B denote the known movement transformations associated with the robot hand and the camera, respectively, this paper introduces a new linear decomposition algorithm which consists of singular value decomposition followed by the estimation of the optimal rotation matrix and the least squares equation to solve the rotation matrix of X. Without the requirements of traditional methods that A and B be rigid transformations with the same rotation angle, it enables the extension to non-rigid transformations for A and B. The details of our method are given, together with a short discussion of experimental results, showing that more precision and robustness can be achieved.
基金This research was funded by the National Natural Science Foundation of China(Nos.71762010,62262019,62162025,61966013,12162012)the Hainan Provincial Natural Science Foundation of China(Nos.823RC488,623RC481,620RC603,621QN241,620RC602,121RC536)+1 种基金the Haikou Science and Technology Plan Project of China(No.2022-016)the Project supported by the Education Department of Hainan Province,No.Hnky2021-23.
文摘Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.
文摘针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD分解得到基本模式分量,应用基本模式分量信号来构造Hankel矩阵,对该矩阵进行正交化奇异值(Singular value decomposition,SVD)分解,以奇异值关键叠层作为奇异值的选择准则对信号进行重构,应用重构信号的傅里叶谱来检测高速列车万向轴的动不平衡,消除EEMD分解模式频带重叠对故障特征的淹没和混淆效应,提高了谱的清晰度,凸显了故障特征。应用万向轴动不平衡试验数据对该方法进行试验验证,结果表明,该方法能够有效检测万向轴动不平衡引起的故障特征和万向轴的固有振动特征,与纯EEMD方法相比,该方法在谱的清晰度和故障表征力上得到了显著提高。
文摘为了解决滚动轴承振动信号中微弱故障信息难以提取的问题,提出了一种基于奇异值分解(Singular Value Decomposition,SVD)和Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)的轴承振动信号特征提取方法。采用SVD将突变信息从背景噪声和光滑信号中分离,提取信号的突变信息;利用TKEO计算突变信息的瞬时能量,对该能量信号进行频谱分析,从而提取出轴承振动信号的能量频谱特征,用于故障检测。将该方法应用于轴承外圈、内圈局部故障状态下的振动信号特征提取,利用特征信息能够准确检测并识别出故障类型,表明了该方法的可行性和有效性。