Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data,...Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan.展开更多
Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sin...Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sinks. Xiaoxing’anling are one of several concentrated distribution areas of forested wetland in China, but the carbon storage and carbon sink/source of forested wetlands in this area is unclear. We measured the ecosystem carbon storage (vegetation and soil), annual net carbon sequestration of vegetation and annual carbon emissions of soil heterotrophic respiration of five typical forested wetland types (alder swamp, white birch swamp, larch swamp, larch fen, and larch bog) distributed along a moisture gradient in this area in order to reveal the spatial variations of their carbon storage and quantitatively evaluate their position as carbon sink or source according to the net carbon balance of the ecosystems. The results show that the larch fen had high carbon storage (448.8 t ha^(−1)) (6.8% higher than the larch bog and 10.5–30.1% significantly higher than other three wetlands (P < 0.05), the white birch swamp and larch bog were medium carbon storage ecosystems (406.3 and 420.1 t ha^(−1)) (12.4–21.8% significantly higher than the other two types (P < 0.0 5), while the alder swamp and larch swamp were low in carbon storage (345.0 and 361.5 t ha^(−1), respectively). The carbon pools of the five wetlands were dominated by their soil carbon pools (88.5–94.5%), and the vegetation carbon pool was secondary (5.5–11.5%). At the same time, their ecosystem net carbon balances were positive (0.1–0.6 t ha^(−1) a^(−1)) because the annual net carbon sequestration of vegetation (4.0–4.5 t ha^(−1) a^(−1)) were higher than the annual carbon emissions of soil heterotrophic respiration (CO_(2) and CH_(4)) (3.8–4.4 t ha^(−1) a^(−1)) in four wetlands, (the alder swamp being the exception), so all four were carbon sinks while only the alder swamp was a source of carbon emissions (− 2.1 t ha^(−1) a^(−1)) due to a degraded tree layer. Our results demonstrate that these forested wetlands were generally carbon sinks in the Xiaoxing’anling, and there was obvious spatial variation in carbon storage of ecosystems along the moisture gradient.展开更多
The source-sink relationship determines the ultimate grain yield.We investigated the genetic basis of the relationship between source and sink and yield potential in rice.In two environments,we identified quantitative...The source-sink relationship determines the ultimate grain yield.We investigated the genetic basis of the relationship between source and sink and yield potential in rice.In two environments,we identified quantitative trait loci(QTL)associated with sink capacity(total spikelet number per panicle and thousand-grain weight),source leaf(flag leaf length,flag leaf width and flag leaf area),source-sink relationship(total spikelet number to flag leaf area ratio)and yield-related traits(filled grain number per panicle,panicle number per plant,grain yield per plant,biomass per plant,and harvest index)by genome-wide association analysis using 272 Xian(indica)accessions.The panel showed substantial variation for all traits in the two environments and revealed complex phenotypic correlations.A total of 70 QTL influencing the 11 traits were identified using 469,377 high-quality SNP markers.Five QTL were detected consistently in four chromosomal regions in both environments.Five QTL clusters simultaneously affected source,sink,source–sink relationship,and grain yield traits,probably explaining the genetic basis of significant correlations of grain yield with source and sink traits.We selected 24 candidate genes in the four consistent QTL regions by identifying linkage disequilibrium(LD)blocks associated with significant SNPs and performing haplotype analysis.The genes included one cloned gene(NOG1)and three newly identified QTL(qHI6,qTGW7,and qFLA8).These results provide a theoretical basis for high-yield rice breeding by increasing and balancing source–sink relationships using marker-assisted selection.展开更多
The East China Sea(ECS) is a river-dominated epicontinental sea, linking the Asian continent to the northwestern Pacific via the large rivers originating from Tibetan Plateau. The relevant huge influx of riverine detr...The East China Sea(ECS) is a river-dominated epicontinental sea, linking the Asian continent to the northwestern Pacific via the large rivers originating from Tibetan Plateau. The relevant huge influx of riverine detritus has developed unique sedimentary systems in the ECS during the Quaternary, offering ideal terrestrial archives for reconstructing Quaternary paleoenvironmental changes and studying land-sea interactions. Overall, two characteristic river systems dominate the sedimentary systems and sediment source to sink transport patterns in the ECS, represented by the Changjiang(Yangtze River) and Huanghe(Yellow River) for the large river system and Taiwan rivers for the small river system. Given this, the sediments derived from both river systems bear distinct features in terms of parent rock lithology, provenance weathering and sediment transport. Previous studies mostly focus on either the ‘source' discrimination or the ‘sink' records of the sedimentary system in the ECS, while the source to sink process linking the land and sea, in particular its time scale, has been poorly understood. Here we introduce a newly-developed dating technique, the ‘comminution age' method, which offers a quantitative constraint on the time scale of sediment transfer from its ultimate source to the final depositional sink. This novel method is of great significance for improving our understanding on the earth surface processes including tectonic-climate driven weathering, and sediment recycling in relation to landscape evolution and marine environmental changes. The application of comminution age method in the ECS will provide important constraints on sediment source-to-sink process and more evidences for the construction of late Quaternary paleoenvironmental changes under these unique sedimentary systems.展开更多
Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources...Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources and moisture sinks are calculated. Anomalous circulation and the vertically integrated heat source with the vertical integrated moisture sink and outgoing longwave radiation (OLR) flux are examined based upon monthly composites for 16 great wet-spells and 8 great dry-spells over the middle-lower reaches of the Yangtze River. The wind anomaly exhibits prominent differences between the great wet-spell and the great dry-spell over the Yangtze River Valley. For the great wet-spell, the anomalous southerly from the Bay of Bengal and the South China Sea and the anomalous northerly over North China enhanced low-level convergence toward a narrow latitudinal belt area (the middle-lower reaches of the Yangtze River). The southerly anomaly is connected with an anticyclonic anomalous circulation system centered at 22 degreesN, 140 degreesE and the northerly anomaly is associated with a cyclonic anomalous circulation system centered at the Japan Sea. In the upper level, the anomalous northwesterly between an anticyclonic anomalous system with the center at 23 degreesN, 105 degreesE and a cyclonic anomalous system with the center at Korea diverged over the middle-lower reaches of the Yangtze River. On the contrary, for the great dry-spell, the anomalous northerly over South China and the anomalous southerly over North China diverged from the Yangtze River Valley in the low level. The former formed in the western part of a cyclonic anomalous system centered at 23 degreesN, 135 degreesE. The latter was located in the western ridge of an anticyclonic anomalous system in the northwestern Pacific. The upper troposphere showed easterly anomaly that converged over the middle-lower reaches of the Yangtze River. A cyclonic anomalous system in South China and an anticyclonic system centered in the Japan Sea enhanced the easterly. Large atmospheric heat source anomalies of opposite signs existed over the western Pacific - the South China Sea, with negative in the great wet-spell and positive in the great dry-spell. The analysis of heat source also revealed positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell over the Yangtze River valley. The changes of the moisture sink and OLR were correspondingly altered, implying the change of heat source anomaly is due to the latent heat releasing of convective activity. Over the southeastern Tibetan Plateau- the Bay of Bengal, the analysis of heat source shows positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell because of latent heating change. The change of divergent wind coexisted with the change of heat source. In the great wet-spell, southerly divergent wind anomaly in the low level and northerly divergent wind anomaly in high-level are seen over South China. These divergent wind anomalies are helpful to the low-level convergence anomaly and high-level divergence anomaly over the Yangtze River valley. The low-level northerly divergent wind anomaly and high-level southerly divergent wind anomaly over South China reduced the low-level convergence and high-level divergence over the Yangtze River valley during the great dry-spell.展开更多
The convection of a Maxwell fluid over a stretching porous surface with a heat source/sink in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary laye...The convection of a Maxwell fluid over a stretching porous surface with a heat source/sink in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary layer equations into coupled nonlinear ordinary differential equations. The ordinary differential equations are solved numerically by the Bvp4c with MATLAB, which is a collocation method equivalent to the fourth-order mono-implicit Runge-Kutta method. Furthermore, more attention is paid to the effects of the physical parameters, especially the parameters related to nanoparticles, on the temperature and concentration distributions with consideration of permeability and the heat source/sink.展开更多
The effects of viscous dissipation and heat source/sink on fully developed mixed convection for the laminar flow in a parallel-plate vertical channel are investigated. The plate exchanges heat with an external fluid. ...The effects of viscous dissipation and heat source/sink on fully developed mixed convection for the laminar flow in a parallel-plate vertical channel are investigated. The plate exchanges heat with an external fluid. Both conditions of equal and different reference temperatures of the external fluid are considered. First, the simple cases of the negligible Brinkman number or the negligible Grashof number are solved analytically. Then, the combined effects of buoyancy forces and viscous dissipation in the presence of heat source/sink are analyzed by a perturbation series method valid for small values of the perturbation parameter. To relax the conditions on the perturbation parameter, the velocity and temperature fields are solved by using the Runge-Kutta fourth-order method with the shooting technique. The velocity, temperature, skin friction, and Nusselt num- bers at the plates are discussed numerically and presented through graphs.展开更多
The present study deals with the flow over a nonlinearly stretching sheet of Casson fluid with the effects of radiation and heat source/sink. The Casson fluid model is used to characterize the non-Newtonian fluid beha...The present study deals with the flow over a nonlinearly stretching sheet of Casson fluid with the effects of radiation and heat source/sink. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour. With the help of justified similarity transformations the governing equations were reduced to couple nonlinear ordinary differential equations. The effective numerical technique Keller Box method is used to solve these equations. The variations in velocity, temperature profiles were presented with the various values of nonlinear stretching parameter n and Casson parameter β. The nature of Skinfriction and Local nusselt number has presented. Effects of radiation and heat source/sink on temperature profiles have been discussed.展开更多
An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. ...An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. Heat transfer characteristics are examined for two different kinds of boundary conditions, namely 1) variable wall temperature and 2) variable heat flux. The governing partial differential equations are transformed to system of ordinary differential equations. These equations are solved numerically by applying RKF-45 method. The effects of various physical parameters such as magnetic parameter, dust interaction parameter, number density, Prandtl number, Eckert number, heat source/sink parameter and unsteadiness parameter on velocity and temperature profiles are studied.展开更多
A computational fluid dynamics( CFD) model was presented to simulate wind flow over a forest canopy for analyzing the wind flow within and above forest canopies. Unlike previous studies on the canopy flow,the effect o...A computational fluid dynamics( CFD) model was presented to simulate wind flow over a forest canopy for analyzing the wind flow within and above forest canopies. Unlike previous studies on the canopy flow,the effect of canopy contour on the canopy was considered to develop the simulation method into a more general but complex case of wind flow over a forest canopy,using cedrus deodara and cinnamomum camphora. The desire of this work is mainly motivated to provide a rational way for predicting the wind flow within and above vegetation canopies. The model of canopy is not incorporated in the geometrical model,and it uses a porous domain combined with k-ε two-equation turbulence model with source / sink terms. The objectives of this paper are to analyze the contour of pressure and velocity and compare the simulation results with other works and field measurements. Results are encouraging,as the model profiles of mean velocity( u) qualitatively agree well with other works compared with and quantitatively have similar explanations as several authors. In conclusion, it is demonstrated that the adoption turbulence model with source / sink terms for forest canopies is proved to be a physically accurate and numerically robust method. The model and method are recommended for future use in simulating turbulent flows in forest canopies.展开更多
The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equa...The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equations describing the flow model have been obtained one by one for two different cases of source and sink. To observe the effect of the physical parameters such as source/sink and vertex viscosity, the numerical results of the velocity and microrotational velocity are finally shown on the graphs.展开更多
Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have ...Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have been studies on nanofluids, including metal, ceramic and magnetic nanoparticles mixed with base fluids such as Water, Kerosene, and Ethylene glycol. However, research on fluids employing semiconductor nanoparticles as supplements to base fluids to generate nanofluids and hybrid nanofluids is limited. For the investigation, Gallium nitrite, a binary semiconductor with excellent heat convection, is together with Cu metal nanoparticles and Al<sub>2</sub>O<sub>3</sub> ceramic nanoparticles separately in the base fluid Ethylene glycol (EG) to form hybrid nanofluids. The effects of convective boundary conditions, thermal radiation, heat source/sink, suction/injection, and activation energy on three-dimensional Williamson MHD hybrid nanofluid flow of Cu + GaN + EG, Al<sub>2</sub>O<sub>3</sub> + GaN + EG, and Cu + Al<sub>2</sub>O<sub>3</sub> + EG are investigated on a stretched sheet with porosity. A similarity transformation is performed on the governing equations to transform them into dimensionless ordinary differential equations ODEs. Numerical analysis is carried out in MATLAB utilizing bvp5c and the shooting technique. The variations of velocity, temperature, and concentration profiles as a function of different physical effects are presented graphically with dimensionless parameters and explained the variations scientifically. As varied with different parameters, the values of the Skin-friction coefficient, Nusselt number, and Sherwood number are mentioned in the table.展开更多
Currently, due to the burning of fossil fuels and changes in land use patterns, a lot of CO2 (carbon dioxide) emissions into the air, the amount of CO2 in the air is extremely increased. According to the research CO...Currently, due to the burning of fossil fuels and changes in land use patterns, a lot of CO2 (carbon dioxide) emissions into the air, the amount of CO2 in the air is extremely increased. According to the research CO2 is the main component of greenhouse gases and the main culprit of causing the greenhouse effect. The ocean is a huge repository of carbon, water can dissolve a large amount of CO2, in the ocean, a large number of plants and planktonic algae absorb CO2 to produce 02, It is a very large gathering place (sink). At the same time, CO2 aggregation in the ocean seawater acidity increases, impact on fishery resources, sources and sinks of CO2 were discussed in the paper.展开更多
As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a cruc...As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.展开更多
This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of...This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of a heat source/sink and thermal stratification. To gauge the energy loss during the process, an irreversibility analysis is also performed. A numerical solution to the envisaged problem is obtained using the bvp4c package of MATLAB. Graphs are drawn to assess the consequences of the arising parameters against the associated profiles. The results show that an augmentation in the magnetic field and nanomaterial volume fraction results in an enhancement in the temperature profile. A strong magnetic field can significantly reduce the fluid velocity. The behavior of the Skin friction coefficient against the different estimates of emerging parameters is discussed. .展开更多
NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its s...NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/weak ascending motion and correspondingly constructs a secondary circulation cell in lesser/greater precipitation years.展开更多
Non-point-source pollution has become a major threat to the water quality of the Three Gorges Reservoir(TGR);however,nutrient loadings from terrestrial sources are unclear due to a lack of in situ monitoring.A represe...Non-point-source pollution has become a major threat to the water quality of the Three Gorges Reservoir(TGR);however,nutrient loadings from terrestrial sources are unclear due to a lack of in situ monitoring.A representative small watershed in the central part of the TGR area was selected to monitor the loss of nitrogen(N) and phosphorous(P) continuously along with the runoff from 2007 through 2009 to understand the exact sources and loadings.Results show that the non-point-source nitrogen and phosphorus comes mainly from the storm runoff from residential areas,citrus orchards and sloping croplands,which contributes up to 76% of the loadings in this watershed.Thus,a crucial measure for controlling non-point-source pollution is to intercept storm runoff from the three sources.Paddy fields provide a sink for non-point-source N and P by intercepting the runoff and sediment along with their different forms of nitrogen and phosphorus.The N and P removal efficiency by paddy fields from residential areas is within the range of 56% to 98%.Paddy fields are an important land-use option for reducing the non-point-source loading of N and P in the TGR area.展开更多
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass tra...An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.展开更多
Multiple source provenance of sediments and submarine fan formation are herein investigated based on Quaternary sandy barriers of the Brazilian Southernmost Coastal Plain.LA-ICP-MS dating on 1625 detrital zircons from...Multiple source provenance of sediments and submarine fan formation are herein investigated based on Quaternary sandy barriers of the Brazilian Southernmost Coastal Plain.LA-ICP-MS dating on 1625 detrital zircons from marine and aeolian facies sands of four successive lagoon-barrier systems are analyzed.The characterization of Archean to Pleistocene zircons into a younger Andean(22±4 Ma to 1±1 Ma,48 from 1625),Mesozoic to Paleozoic,and Mesoproterozoic(479 from 1622)populations suggest that the main feeding of sediments to the coastal plain occurred through the La Plata River drainage system.The significant contribution of sediments is transported from the mouth of La Plata River northward by longshore circulation(littoral drift).Minor contributions are also recognized as.a farther source associatedwith the Patagonia drainage and nearby source related to the Uruguay/Rio Grande do Sul Shield and the ParanáBasin,drained by the Camaquãand Jacuírivers.The latter one is recognized by the contribution fromNeoproterozoic to Early Paleozoic,and some Paleoproterozoic and Archean zircon grains.The definition of the sources of clastic sediments allows inferences about the origination of Rio Grande Fan where both the cold Falkland and the warm Brazil currents played a major role.展开更多
The focus of the study is to examine thermal radiation and viscous dissipative heat transfers of magnetohydrodynamics (MHD) stagnation point flow past a permeable confined stretching cylinder with non-uniform heat sou...The focus of the study is to examine thermal radiation and viscous dissipative heat transfers of magnetohydrodynamics (MHD) stagnation point flow past a permeable confined stretching cylinder with non-uniform heat source or sink. The formulated equation governing the flow is non-dimensional. The dimensionless momentum and energy equation are solved using shooting technique coupled with fourth-order Runge-kutta integrated scheme which satisfied smoothness conditions at the edge of the boundary layer. The result for the velocity and temperature distributions are presented graphically and discussed to portray the effects of some important embodiment parameters on the flow. The Nusselt number and skin friction were obtained and compared with the previous scholars’ results in others to validate the present research work.展开更多
基金the auspices of the National!(G1998040800)CAS's Key Project for Basic Research on the Tibetan Plateau! (KZ951-A1-204, KZ95T-
文摘Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan.
基金This project was supported fi nancially by the National Key Research and Development Program of China(2016YFA0600803)the National Natural Science Foundation of China(31370461).
文摘Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sinks. Xiaoxing’anling are one of several concentrated distribution areas of forested wetland in China, but the carbon storage and carbon sink/source of forested wetlands in this area is unclear. We measured the ecosystem carbon storage (vegetation and soil), annual net carbon sequestration of vegetation and annual carbon emissions of soil heterotrophic respiration of five typical forested wetland types (alder swamp, white birch swamp, larch swamp, larch fen, and larch bog) distributed along a moisture gradient in this area in order to reveal the spatial variations of their carbon storage and quantitatively evaluate their position as carbon sink or source according to the net carbon balance of the ecosystems. The results show that the larch fen had high carbon storage (448.8 t ha^(−1)) (6.8% higher than the larch bog and 10.5–30.1% significantly higher than other three wetlands (P < 0.05), the white birch swamp and larch bog were medium carbon storage ecosystems (406.3 and 420.1 t ha^(−1)) (12.4–21.8% significantly higher than the other two types (P < 0.0 5), while the alder swamp and larch swamp were low in carbon storage (345.0 and 361.5 t ha^(−1), respectively). The carbon pools of the five wetlands were dominated by their soil carbon pools (88.5–94.5%), and the vegetation carbon pool was secondary (5.5–11.5%). At the same time, their ecosystem net carbon balances were positive (0.1–0.6 t ha^(−1) a^(−1)) because the annual net carbon sequestration of vegetation (4.0–4.5 t ha^(−1) a^(−1)) were higher than the annual carbon emissions of soil heterotrophic respiration (CO_(2) and CH_(4)) (3.8–4.4 t ha^(−1) a^(−1)) in four wetlands, (the alder swamp being the exception), so all four were carbon sinks while only the alder swamp was a source of carbon emissions (− 2.1 t ha^(−1) a^(−1)) due to a degraded tree layer. Our results demonstrate that these forested wetlands were generally carbon sinks in the Xiaoxing’anling, and there was obvious spatial variation in carbon storage of ecosystems along the moisture gradient.
基金funded by the National Key Research and Development Program of China(2016YFD0100301)the National Natural Science Foundation of China(31671602)the Agricultural Science and Technology Innovation Program and the Cooperation and Innovation Mission(CAASZDXT2018001)
文摘The source-sink relationship determines the ultimate grain yield.We investigated the genetic basis of the relationship between source and sink and yield potential in rice.In two environments,we identified quantitative trait loci(QTL)associated with sink capacity(total spikelet number per panicle and thousand-grain weight),source leaf(flag leaf length,flag leaf width and flag leaf area),source-sink relationship(total spikelet number to flag leaf area ratio)and yield-related traits(filled grain number per panicle,panicle number per plant,grain yield per plant,biomass per plant,and harvest index)by genome-wide association analysis using 272 Xian(indica)accessions.The panel showed substantial variation for all traits in the two environments and revealed complex phenotypic correlations.A total of 70 QTL influencing the 11 traits were identified using 469,377 high-quality SNP markers.Five QTL were detected consistently in four chromosomal regions in both environments.Five QTL clusters simultaneously affected source,sink,source–sink relationship,and grain yield traits,probably explaining the genetic basis of significant correlations of grain yield with source and sink traits.We selected 24 candidate genes in the four consistent QTL regions by identifying linkage disequilibrium(LD)blocks associated with significant SNPs and performing haplotype analysis.The genes included one cloned gene(NOG1)and three newly identified QTL(qHI6,qTGW7,and qFLA8).These results provide a theoretical basis for high-yield rice breeding by increasing and balancing source–sink relationships using marker-assisted selection.
基金supported by the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology (MRE201402)the National Natural Science Foundation of China (41306040, 41225020)the Foundation of Key Laboratory of Yangtze River Water Environment (YRWEF 201305)
文摘The East China Sea(ECS) is a river-dominated epicontinental sea, linking the Asian continent to the northwestern Pacific via the large rivers originating from Tibetan Plateau. The relevant huge influx of riverine detritus has developed unique sedimentary systems in the ECS during the Quaternary, offering ideal terrestrial archives for reconstructing Quaternary paleoenvironmental changes and studying land-sea interactions. Overall, two characteristic river systems dominate the sedimentary systems and sediment source to sink transport patterns in the ECS, represented by the Changjiang(Yangtze River) and Huanghe(Yellow River) for the large river system and Taiwan rivers for the small river system. Given this, the sediments derived from both river systems bear distinct features in terms of parent rock lithology, provenance weathering and sediment transport. Previous studies mostly focus on either the ‘source' discrimination or the ‘sink' records of the sedimentary system in the ECS, while the source to sink process linking the land and sea, in particular its time scale, has been poorly understood. Here we introduce a newly-developed dating technique, the ‘comminution age' method, which offers a quantitative constraint on the time scale of sediment transfer from its ultimate source to the final depositional sink. This novel method is of great significance for improving our understanding on the earth surface processes including tectonic-climate driven weathering, and sediment recycling in relation to landscape evolution and marine environmental changes. The application of comminution age method in the ECS will provide important constraints on sediment source-to-sink process and more evidences for the construction of late Quaternary paleoenvironmental changes under these unique sedimentary systems.
基金Supported by National Key Programme for Developing Basic Sciences G1998040900 Part 1 and IAPInnovation Foundation 8-1308.
文摘Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources and moisture sinks are calculated. Anomalous circulation and the vertically integrated heat source with the vertical integrated moisture sink and outgoing longwave radiation (OLR) flux are examined based upon monthly composites for 16 great wet-spells and 8 great dry-spells over the middle-lower reaches of the Yangtze River. The wind anomaly exhibits prominent differences between the great wet-spell and the great dry-spell over the Yangtze River Valley. For the great wet-spell, the anomalous southerly from the Bay of Bengal and the South China Sea and the anomalous northerly over North China enhanced low-level convergence toward a narrow latitudinal belt area (the middle-lower reaches of the Yangtze River). The southerly anomaly is connected with an anticyclonic anomalous circulation system centered at 22 degreesN, 140 degreesE and the northerly anomaly is associated with a cyclonic anomalous circulation system centered at the Japan Sea. In the upper level, the anomalous northwesterly between an anticyclonic anomalous system with the center at 23 degreesN, 105 degreesE and a cyclonic anomalous system with the center at Korea diverged over the middle-lower reaches of the Yangtze River. On the contrary, for the great dry-spell, the anomalous northerly over South China and the anomalous southerly over North China diverged from the Yangtze River Valley in the low level. The former formed in the western part of a cyclonic anomalous system centered at 23 degreesN, 135 degreesE. The latter was located in the western ridge of an anticyclonic anomalous system in the northwestern Pacific. The upper troposphere showed easterly anomaly that converged over the middle-lower reaches of the Yangtze River. A cyclonic anomalous system in South China and an anticyclonic system centered in the Japan Sea enhanced the easterly. Large atmospheric heat source anomalies of opposite signs existed over the western Pacific - the South China Sea, with negative in the great wet-spell and positive in the great dry-spell. The analysis of heat source also revealed positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell over the Yangtze River valley. The changes of the moisture sink and OLR were correspondingly altered, implying the change of heat source anomaly is due to the latent heat releasing of convective activity. Over the southeastern Tibetan Plateau- the Bay of Bengal, the analysis of heat source shows positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell because of latent heating change. The change of divergent wind coexisted with the change of heat source. In the great wet-spell, southerly divergent wind anomaly in the low level and northerly divergent wind anomaly in high-level are seen over South China. These divergent wind anomalies are helpful to the low-level convergence anomaly and high-level divergence anomaly over the Yangtze River valley. The low-level northerly divergent wind anomaly and high-level southerly divergent wind anomaly over South China reduced the low-level convergence and high-level divergence over the Yangtze River valley during the great dry-spell.
基金supported by the National Natural Science Foundation of China(No.11302024)the Fundamental Research Funds for the Central Universities(No.FRF-TP-15-036A3)+1 种基金the Beijing Higher Education Young Elite Teacher Project(No.YETP0387)the Foundation of the China Scholarship Council in 2014(No.154201406465041)
文摘The convection of a Maxwell fluid over a stretching porous surface with a heat source/sink in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary layer equations into coupled nonlinear ordinary differential equations. The ordinary differential equations are solved numerically by the Bvp4c with MATLAB, which is a collocation method equivalent to the fourth-order mono-implicit Runge-Kutta method. Furthermore, more attention is paid to the effects of the physical parameters, especially the parameters related to nanoparticles, on the temperature and concentration distributions with consideration of permeability and the heat source/sink.
基金University Grant Commission in New Delhi for the financial support under UGC-Major Research Project and Maulana Azad National Fellowship for Minority Students
文摘The effects of viscous dissipation and heat source/sink on fully developed mixed convection for the laminar flow in a parallel-plate vertical channel are investigated. The plate exchanges heat with an external fluid. Both conditions of equal and different reference temperatures of the external fluid are considered. First, the simple cases of the negligible Brinkman number or the negligible Grashof number are solved analytically. Then, the combined effects of buoyancy forces and viscous dissipation in the presence of heat source/sink are analyzed by a perturbation series method valid for small values of the perturbation parameter. To relax the conditions on the perturbation parameter, the velocity and temperature fields are solved by using the Runge-Kutta fourth-order method with the shooting technique. The velocity, temperature, skin friction, and Nusselt num- bers at the plates are discussed numerically and presented through graphs.
文摘The present study deals with the flow over a nonlinearly stretching sheet of Casson fluid with the effects of radiation and heat source/sink. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour. With the help of justified similarity transformations the governing equations were reduced to couple nonlinear ordinary differential equations. The effective numerical technique Keller Box method is used to solve these equations. The variations in velocity, temperature profiles were presented with the various values of nonlinear stretching parameter n and Casson parameter β. The nature of Skinfriction and Local nusselt number has presented. Effects of radiation and heat source/sink on temperature profiles have been discussed.
文摘An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. Heat transfer characteristics are examined for two different kinds of boundary conditions, namely 1) variable wall temperature and 2) variable heat flux. The governing partial differential equations are transformed to system of ordinary differential equations. These equations are solved numerically by applying RKF-45 method. The effects of various physical parameters such as magnetic parameter, dust interaction parameter, number density, Prandtl number, Eckert number, heat source/sink parameter and unsteadiness parameter on velocity and temperature profiles are studied.
基金National Natural Science Foundations of China(Nos.51178094,41371445)
文摘A computational fluid dynamics( CFD) model was presented to simulate wind flow over a forest canopy for analyzing the wind flow within and above forest canopies. Unlike previous studies on the canopy flow,the effect of canopy contour on the canopy was considered to develop the simulation method into a more general but complex case of wind flow over a forest canopy,using cedrus deodara and cinnamomum camphora. The desire of this work is mainly motivated to provide a rational way for predicting the wind flow within and above vegetation canopies. The model of canopy is not incorporated in the geometrical model,and it uses a porous domain combined with k-ε two-equation turbulence model with source / sink terms. The objectives of this paper are to analyze the contour of pressure and velocity and compare the simulation results with other works and field measurements. Results are encouraging,as the model profiles of mean velocity( u) qualitatively agree well with other works compared with and quantitatively have similar explanations as several authors. In conclusion, it is demonstrated that the adoption turbulence model with source / sink terms for forest canopies is proved to be a physically accurate and numerically robust method. The model and method are recommended for future use in simulating turbulent flows in forest canopies.
文摘The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equations describing the flow model have been obtained one by one for two different cases of source and sink. To observe the effect of the physical parameters such as source/sink and vertex viscosity, the numerical results of the velocity and microrotational velocity are finally shown on the graphs.
文摘Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have been studies on nanofluids, including metal, ceramic and magnetic nanoparticles mixed with base fluids such as Water, Kerosene, and Ethylene glycol. However, research on fluids employing semiconductor nanoparticles as supplements to base fluids to generate nanofluids and hybrid nanofluids is limited. For the investigation, Gallium nitrite, a binary semiconductor with excellent heat convection, is together with Cu metal nanoparticles and Al<sub>2</sub>O<sub>3</sub> ceramic nanoparticles separately in the base fluid Ethylene glycol (EG) to form hybrid nanofluids. The effects of convective boundary conditions, thermal radiation, heat source/sink, suction/injection, and activation energy on three-dimensional Williamson MHD hybrid nanofluid flow of Cu + GaN + EG, Al<sub>2</sub>O<sub>3</sub> + GaN + EG, and Cu + Al<sub>2</sub>O<sub>3</sub> + EG are investigated on a stretched sheet with porosity. A similarity transformation is performed on the governing equations to transform them into dimensionless ordinary differential equations ODEs. Numerical analysis is carried out in MATLAB utilizing bvp5c and the shooting technique. The variations of velocity, temperature, and concentration profiles as a function of different physical effects are presented graphically with dimensionless parameters and explained the variations scientifically. As varied with different parameters, the values of the Skin-friction coefficient, Nusselt number, and Sherwood number are mentioned in the table.
文摘Currently, due to the burning of fossil fuels and changes in land use patterns, a lot of CO2 (carbon dioxide) emissions into the air, the amount of CO2 in the air is extremely increased. According to the research CO2 is the main component of greenhouse gases and the main culprit of causing the greenhouse effect. The ocean is a huge repository of carbon, water can dissolve a large amount of CO2, in the ocean, a large number of plants and planktonic algae absorb CO2 to produce 02, It is a very large gathering place (sink). At the same time, CO2 aggregation in the ocean seawater acidity increases, impact on fishery resources, sources and sinks of CO2 were discussed in the paper.
文摘As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.
文摘This study discusses the magnetohydrodynamic nanofluid flow over an inclined permeable surface influenced by mixed convection, and Cattaeo-Christov heat flux. The heat transfer analysis is performed in the presence of a heat source/sink and thermal stratification. To gauge the energy loss during the process, an irreversibility analysis is also performed. A numerical solution to the envisaged problem is obtained using the bvp4c package of MATLAB. Graphs are drawn to assess the consequences of the arising parameters against the associated profiles. The results show that an augmentation in the magnetic field and nanomaterial volume fraction results in an enhancement in the temperature profile. A strong magnetic field can significantly reduce the fluid velocity. The behavior of the Skin friction coefficient against the different estimates of emerging parameters is discussed. .
基金supported by the National Natural Science Foundation of China(Grant Nos. 40633018 and 40675036)
文摘NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/weak ascending motion and correspondingly constructs a secondary circulation cell in lesser/greater precipitation years.
基金supported by the National Science & Technology Pillar Program(Grant No. 2011BAD31B03)the Special Project on Water Pollution Control by the National Science & Technology Pillar Program(Grant No. 2009ZX07104-002)
文摘Non-point-source pollution has become a major threat to the water quality of the Three Gorges Reservoir(TGR);however,nutrient loadings from terrestrial sources are unclear due to a lack of in situ monitoring.A representative small watershed in the central part of the TGR area was selected to monitor the loss of nitrogen(N) and phosphorous(P) continuously along with the runoff from 2007 through 2009 to understand the exact sources and loadings.Results show that the non-point-source nitrogen and phosphorus comes mainly from the storm runoff from residential areas,citrus orchards and sloping croplands,which contributes up to 76% of the loadings in this watershed.Thus,a crucial measure for controlling non-point-source pollution is to intercept storm runoff from the three sources.Paddy fields provide a sink for non-point-source N and P by intercepting the runoff and sediment along with their different forms of nitrogen and phosphorus.The N and P removal efficiency by paddy fields from residential areas is within the range of 56% to 98%.Paddy fields are an important land-use option for reducing the non-point-source loading of N and P in the TGR area.
文摘An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.
基金the Brazilian Scholarship Agency(CAPES) for the scholarship to the second author (JJC)the National Council for Scientific and Technological Development–CNPq for the financial support (grant#305053/2014-0).
文摘Multiple source provenance of sediments and submarine fan formation are herein investigated based on Quaternary sandy barriers of the Brazilian Southernmost Coastal Plain.LA-ICP-MS dating on 1625 detrital zircons from marine and aeolian facies sands of four successive lagoon-barrier systems are analyzed.The characterization of Archean to Pleistocene zircons into a younger Andean(22±4 Ma to 1±1 Ma,48 from 1625),Mesozoic to Paleozoic,and Mesoproterozoic(479 from 1622)populations suggest that the main feeding of sediments to the coastal plain occurred through the La Plata River drainage system.The significant contribution of sediments is transported from the mouth of La Plata River northward by longshore circulation(littoral drift).Minor contributions are also recognized as.a farther source associatedwith the Patagonia drainage and nearby source related to the Uruguay/Rio Grande do Sul Shield and the ParanáBasin,drained by the Camaquãand Jacuírivers.The latter one is recognized by the contribution fromNeoproterozoic to Early Paleozoic,and some Paleoproterozoic and Archean zircon grains.The definition of the sources of clastic sediments allows inferences about the origination of Rio Grande Fan where both the cold Falkland and the warm Brazil currents played a major role.
文摘The focus of the study is to examine thermal radiation and viscous dissipative heat transfers of magnetohydrodynamics (MHD) stagnation point flow past a permeable confined stretching cylinder with non-uniform heat source or sink. The formulated equation governing the flow is non-dimensional. The dimensionless momentum and energy equation are solved using shooting technique coupled with fourth-order Runge-kutta integrated scheme which satisfied smoothness conditions at the edge of the boundary layer. The result for the velocity and temperature distributions are presented graphically and discussed to portray the effects of some important embodiment parameters on the flow. The Nusselt number and skin friction were obtained and compared with the previous scholars’ results in others to validate the present research work.