The sinter with low reduction degradation index(RDI)for COREX reduction was prepared by separated granulation sintering process.The results illustrate that the productivity and tumble index are attained to be 1.64 t m...The sinter with low reduction degradation index(RDI)for COREX reduction was prepared by separated granulation sintering process.The results illustrate that the productivity and tumble index are attained to be 1.64 t m^(-2)h^(-1)and 59.25%,respectively,in pot tests under the optimal conditions.Under the reducing condition simulating COREX shaft furnace,RDI_(+6.3 mm),RDI_(+3.15 mm),and reducibility index of the sinter reach 63.05%,81.52%,and 83.65%,respectively.Compared with traditional sintering process,the productivity rose by 14.69%,and RDI_(+6.3) mm and RDI_(+3.15) mm were increased by 157.54%and 32.70%,respectively.In addition,as the proportion of sinter reached 60%,RDI_(+6.3 mm)and RDI_(+3.15 mm)of comprehensive burden were achieved to be 73.39%and 84.28%,respectively,which could completely meet the requirement of COREX shaft furnace for RDI.The mechanism was demonstrated that the more silicoferrites of calcium and aluminum and silicate phase occurred as well as magnetite,and the amount of Fe_(2)O_(3)decreased substantially in the sinter by separated granulation sintering process.Hence,the low-temperature reducing stress is restrained,with the increase in sinter strength.展开更多
In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its r...In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its reduction properties change and then the effect of sinter proportion on metallurgical performance of composite burden was investigated.The results show that the reducing process of sinter in COREX shaft furnace was basically same with that in blast furnace but sinter seems like breaking faster.Under reducing condition simulated COREX shaft furnace,sinter possessed the worst reduction degradation index(RDI)and undifferentiated reduction index(RI)compared with pellet and iron ore lumps.Macroscopic and microscopic mineralogy changes indicated that sinter presents integral cracking while pellet and lump ore present surface cracking,and no simple congruent relationship exists between cracks of the burden and its ultimate reduction degradation performance.The existence of partial metallurgical performance superposition between composite and single ferrous burden was confirmed.RDI_(+6.3)≥70%and RDI_(+3.15)≥80%were speculated as essential requirements for the composite burden containing sinter in COREX shaft furnace.展开更多
The reduction degradation characteristics of typical sinter, pellet and lump ore were tested with the reducing gas conditions simulating two kinds of irowmaking processes. The results show that, in the same condition ...The reduction degradation characteristics of typical sinter, pellet and lump ore were tested with the reducing gas conditions simulating two kinds of irowmaking processes. The results show that, in the same condition of gas composition and temperature, the reduction degradation degree (RDI〈3.15mm) of sinter is high, RDI〈3.15mm of lump ore is low and RDI〈3.15 mm of pellet is in the middle level. With two kinds of gas composition simulating different iron-making processes, the reduction degradation indices (RDI) of three kinds of iron ores all present the tenden- cy of "inverted V-shape" in the temperature range from 450 to 650℃, and the RDI reach the maximum value at 550℃. The reduction degradation degrees of iron ores are extended when mixing the gas with hydrogen to increase the re duction potential, and the influence extent is discrepant for different iron ores. Colligating the increase amplitude of grains in small size fraction, the influence of reducing gas on lump ore is the greatest, the influence on sinter is the second, and the sensitivity of pellet on the reducing gas properties change is relatively small. As for the degradation form, lump ore and sinter both present the degradation ,of cracking, and the distribution of small grains generated from the cracking is in the range from 03 5 to 6. 3 mm uniformly. The lump ore presents surface cracking, while sin- ter presents integral cracking. The pellet presents the degradation of surface stripping, and the proportion of grains smaller than 0.5 mm is the highest, which is up to 90% in the grains smaller than 3.15 mm.展开更多
In order to provide a reliable reference for utilizing Indonesia vanadium titano-magnetite(VTM) in blast furnace(BF) economically, metallurgical properties of iron ore sinter with addition of Indonesia VTM in mixed si...In order to provide a reliable reference for utilizing Indonesia vanadium titano-magnetite(VTM) in blast furnace(BF) economically, metallurgical properties of iron ore sinter with addition of Indonesia VTM in mixed sintering materials were investigated, including low-temperature reduction degradation index(RDI), reducibility index(RI), and softening/melting properties. Additionally, influenced mechanism of Indonesia VTM on metallurgical properties of sinter was studied. It is found that adding Indonesia VTM in sintering process quickly increases the RDI of sinters, and decreases the RI from 78.02% to 68.43%. Moreover, both beginning temperature(T_4) and final temperature(TD) of softening/melting increase gradually, and cohesive zone temperature range(T_D–T_4) enlarges from 219 oC to 315 oC. As a result, the permeability of cohesive zone gets worse, which is proven by the higher maximum pressure drop(δPmax) in softening/melting experiments. It is concluded that, after comprehensively considering all metallurgical properties mentioned above, the proper proportion of Indonesia VTM in sintering process is proposed in the new raw materials conditions.展开更多
In order to prevent the powdering of a sintered ore from influencing the smooth operation of a blast furnace,the conventional way to deal with it is that the CaCl2 solution is prepared by tap water,and then the soluti...In order to prevent the powdering of a sintered ore from influencing the smooth operation of a blast furnace,the conventional way to deal with it is that the CaCl2 solution is prepared by tap water,and then the solution is sprayed onto the sintered ore for improving its RDI(low temperature reduction degradation index).The CaCl2 solution prepared by adding acid and alkaline waste water resulted from cold rolling is sprayed onto the sintered ore to improve its RDI.The values of RDI+6.3 and RDI+3.15 of the sintered ore which is sprayed by the CaCl2 solution with the CaCl2 concentration of 3.5%(mass percent) are increased by 17.5% and 11.63%,but the index of RDI-0.5 is decreased by 3.1% when the spraying amount of the solution is making up 0.5% of the total sintered ore sprayed in comparison with those of the sintered ore which is not sprayed by using the CaCl2 solution.Experimental results show that after the CaCl2 solutions prepared by adding the acid and alkaline waste water are sprayed on the sintered ore,RDI of the ore can be remarkably improved and therefore another way for recycling acid and alkaline waste water can be available,by which both cost for treating waste water and cost for producing a sintered ore can be decreased and environment is free of pollution by harmful substances in the waste water.展开更多
基金the National Natural Science Foundation of China(No.52174329)the Fundamental Research Funds for the Central Universities of Central South University(No.2021zzts0291).
文摘The sinter with low reduction degradation index(RDI)for COREX reduction was prepared by separated granulation sintering process.The results illustrate that the productivity and tumble index are attained to be 1.64 t m^(-2)h^(-1)and 59.25%,respectively,in pot tests under the optimal conditions.Under the reducing condition simulating COREX shaft furnace,RDI_(+6.3 mm),RDI_(+3.15 mm),and reducibility index of the sinter reach 63.05%,81.52%,and 83.65%,respectively.Compared with traditional sintering process,the productivity rose by 14.69%,and RDI_(+6.3) mm and RDI_(+3.15) mm were increased by 157.54%and 32.70%,respectively.In addition,as the proportion of sinter reached 60%,RDI_(+6.3 mm)and RDI_(+3.15 mm)of comprehensive burden were achieved to be 73.39%and 84.28%,respectively,which could completely meet the requirement of COREX shaft furnace for RDI.The mechanism was demonstrated that the more silicoferrites of calcium and aluminum and silicate phase occurred as well as magnetite,and the amount of Fe_(2)O_(3)decreased substantially in the sinter by separated granulation sintering process.Hence,the low-temperature reducing stress is restrained,with the increase in sinter strength.
基金Project(2019JJ51007)supported by the Natural Science Foundation of Hunan Province,China。
文摘In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its reduction properties change and then the effect of sinter proportion on metallurgical performance of composite burden was investigated.The results show that the reducing process of sinter in COREX shaft furnace was basically same with that in blast furnace but sinter seems like breaking faster.Under reducing condition simulated COREX shaft furnace,sinter possessed the worst reduction degradation index(RDI)and undifferentiated reduction index(RI)compared with pellet and iron ore lumps.Macroscopic and microscopic mineralogy changes indicated that sinter presents integral cracking while pellet and lump ore present surface cracking,and no simple congruent relationship exists between cracks of the burden and its ultimate reduction degradation performance.The existence of partial metallurgical performance superposition between composite and single ferrous burden was confirmed.RDI_(+6.3)≥70%and RDI_(+3.15)≥80%were speculated as essential requirements for the composite burden containing sinter in COREX shaft furnace.
文摘The reduction degradation characteristics of typical sinter, pellet and lump ore were tested with the reducing gas conditions simulating two kinds of irowmaking processes. The results show that, in the same condition of gas composition and temperature, the reduction degradation degree (RDI〈3.15mm) of sinter is high, RDI〈3.15mm of lump ore is low and RDI〈3.15 mm of pellet is in the middle level. With two kinds of gas composition simulating different iron-making processes, the reduction degradation indices (RDI) of three kinds of iron ores all present the tenden- cy of "inverted V-shape" in the temperature range from 450 to 650℃, and the RDI reach the maximum value at 550℃. The reduction degradation degrees of iron ores are extended when mixing the gas with hydrogen to increase the re duction potential, and the influence extent is discrepant for different iron ores. Colligating the increase amplitude of grains in small size fraction, the influence of reducing gas on lump ore is the greatest, the influence on sinter is the second, and the sensitivity of pellet on the reducing gas properties change is relatively small. As for the degradation form, lump ore and sinter both present the degradation ,of cracking, and the distribution of small grains generated from the cracking is in the range from 03 5 to 6. 3 mm uniformly. The lump ore presents surface cracking, while sin- ter presents integral cracking. The pellet presents the degradation of surface stripping, and the proportion of grains smaller than 0.5 mm is the highest, which is up to 90% in the grains smaller than 3.15 mm.
基金Projects(51604069,51604049,U1508213) supported by the National Natural Science Foundation of ChinaProject(N162504004) supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(2017YFB0603800,2017YFB0603801) supported by the National Key R&D Program of China
文摘In order to provide a reliable reference for utilizing Indonesia vanadium titano-magnetite(VTM) in blast furnace(BF) economically, metallurgical properties of iron ore sinter with addition of Indonesia VTM in mixed sintering materials were investigated, including low-temperature reduction degradation index(RDI), reducibility index(RI), and softening/melting properties. Additionally, influenced mechanism of Indonesia VTM on metallurgical properties of sinter was studied. It is found that adding Indonesia VTM in sintering process quickly increases the RDI of sinters, and decreases the RI from 78.02% to 68.43%. Moreover, both beginning temperature(T_4) and final temperature(TD) of softening/melting increase gradually, and cohesive zone temperature range(T_D–T_4) enlarges from 219 oC to 315 oC. As a result, the permeability of cohesive zone gets worse, which is proven by the higher maximum pressure drop(δPmax) in softening/melting experiments. It is concluded that, after comprehensively considering all metallurgical properties mentioned above, the proper proportion of Indonesia VTM in sintering process is proposed in the new raw materials conditions.
基金Item Sponsored by National Natural Science Foundation of China(51274120)
文摘In order to prevent the powdering of a sintered ore from influencing the smooth operation of a blast furnace,the conventional way to deal with it is that the CaCl2 solution is prepared by tap water,and then the solution is sprayed onto the sintered ore for improving its RDI(low temperature reduction degradation index).The CaCl2 solution prepared by adding acid and alkaline waste water resulted from cold rolling is sprayed onto the sintered ore to improve its RDI.The values of RDI+6.3 and RDI+3.15 of the sintered ore which is sprayed by the CaCl2 solution with the CaCl2 concentration of 3.5%(mass percent) are increased by 17.5% and 11.63%,but the index of RDI-0.5 is decreased by 3.1% when the spraying amount of the solution is making up 0.5% of the total sintered ore sprayed in comparison with those of the sintered ore which is not sprayed by using the CaCl2 solution.Experimental results show that after the CaCl2 solutions prepared by adding the acid and alkaline waste water are sprayed on the sintered ore,RDI of the ore can be remarkably improved and therefore another way for recycling acid and alkaline waste water can be available,by which both cost for treating waste water and cost for producing a sintered ore can be decreased and environment is free of pollution by harmful substances in the waste water.