As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sinter...As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sintered magnets,the influences of Ga and Zr on GBD were investigated in this work.The results show that the Zr-doped magnet has the highest coercivity increment(7.97 kOe)by GBD,which is almost twice that of the Ga-doped magnet(4.32 kOe)and the magnet without Ga and Zr(3.24 kOe).Microstructure analysis shows that ZrB_(2)formed in the Zr-doped magnet plays a key role in increasing the diffusion depth.A continuous diffusion channel in the magnet can form because of the presence of ZrB_(2).ZrB_(2)can also increase the defect concentration in GB phases,which can facilitate GBD.Although Ga can also improve the diffusion depth,its effect is not very obvious.The micromagnetic simulation based on the experimental results also proves that the distribution of Tb in the Zr-doped magnet after GBD is beneficial to coercivity.This study reveals that the doping elements Ga and Zr in Nd–Fe–B play an important role in GBD,and could provide a new perspective for researchers to improve the effects of GBD.展开更多
Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time de...Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time dependence of corrosion rates of Nd-Fe-B sintered magnets in different acid solutions were tested. Microstructures of corroded Nd-Fe-B sintered magnets were investigated by means of SEM and AFM. The results indicate that in strong acid solutions of similar hydrogen ion concentration, the corrosion current increases in the order of HCl 〉 H3SO4 〉 HNO3 solution and Nd-Fe-B sintered magnets are passivated in phosphate acid and oxalic acid. Within 25 min, the corrosion rates of Nd-Fe-B sintered magnets in H2SO4 and H3PO4 solutions show a declining trend with immersion time, while in HNO3 and HCl solutions the corrosion rates are rising. And in H2C2O4 solution, weight of the magnets increases. The brim of Nd-Fe-B sintered magnets is corroded rather seriously and the size of the magnets changed greatly in nitric acid. The surfaces of the corroded magnets in the above mentioned acid solutions are all coarse.展开更多
The influence of mean particle size on magnetic properties ofSm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets, prepared by the conventional powder metallurgy method, was studied. With increasing ballmilling t...The influence of mean particle size on magnetic properties ofSm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets, prepared by the conventional powder metallurgy method, was studied. With increasing ballmilling time, mean particle size decreases, specific surface increases, and sintering temperature decreases. The optimum sintering temperature of powders fabricated by baH-milling for 5, 7, 9 and 11 h are 1225, 1225, 1215 and 1215℃ respectively. The optimum value of Br, (BH)max, Hob and Hci of Sm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets with powders ball-milling for 9 h and sintering at 1215 ℃ can reach 0.94 T, 708.4 kA·m^-1, 171.9 kJ·m^-3 and 2276.6 kA·m^-1 respectively, and the irreversible flux loss is less than 5 % after the sample ageing at 550 ℃ for 2 h, so the temperature stability improves and the magnets may be expected to be applied in the circumstances of 550 ℃.展开更多
The magnetic properties of Nd_(16)Fe_(77)B_7 and Nd_(16)Fe_((61-x))Co_(16)Ga_xB_7(x=0,1,2,4,7)have been measured.It is found that the remanent magnetization(Br),maximum energy product(BH)_(max)and the Curie temperatur...The magnetic properties of Nd_(16)Fe_(77)B_7 and Nd_(16)Fe_((61-x))Co_(16)Ga_xB_7(x=0,1,2,4,7)have been measured.It is found that the remanent magnetization(Br),maximum energy product(BH)_(max)and the Curie temperature (T_c)decrease with the increase of Ga content.The coercive force(He)increases with the increase of Ga content when x is less than 2,but decreases when x>2.At x=2,the coercive force reaches its maximum value.It is also found in all the samples investigated that there is a linear relationship between H_c^(1/2)and T^(2/3),which can not be explained by Gaunt's wall barrier model.The temperature dependence of the calculated values of H_v and(4bf) has been discussed.展开更多
Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement....Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement. The DSC measurements showed that hydrogenation of Nd-rich phase occurred in the temperature range of 40-185 ℃, hydrogenation of the tetragonal (Ф) phase in the temperature range of 185-220 ℃, as well as the disproportionation of the Ф phase that occurred in a broad temperature range from around 500 to 800 ℃. The hydrogenation kinetics measurements indicated that hydrogen absorption of the bulk magnets at 50 ℃ absorbed more hydrogen than at 150 ℃, although this procedure was slower at 50 ℃ than at 150℃. This phenomenon was discussed by means of pressure-concentration-temperature (p-c-T) diagrams.展开更多
Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The mag...Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The magnetic properties and mechanical properties due to the formation of AGG grains in Nd-Fe-B sintered magnets were tested. The results show that the magnetic properties, especially the rectangularity were severely deteriorated after the formation of the AGG grains and a step was shown on the demagnetization curve, and the occurrence of AGG may account for the poor rectangularity and existence of the step on demagnetization curve according to the statistical model of magnetization reversal. The fracture toughness and bending strength are lowered because of the stress concentration in the AGG grains. The SEM images show that the formation of AGG grains is caused by the solid sintering due to the absence of RE-rich phase. Statistical model of magnetization reversal can qualitative by explain the dependence of the magnetization reversal behavior on the grain size in the Nd-Fe-B sintered magnets.展开更多
In traditional Nd-Fe-B-based sintered magnets,the composition,role of each element and microstruc-tures have been extensively investigated globally since they were invented in 1983.However,the effects of boron(B)conte...In traditional Nd-Fe-B-based sintered magnets,the composition,role of each element and microstruc-tures have been extensively investigated globally since they were invented in 1983.However,the effects of boron(B)content and post-sinter annealing(PSA)on the microstructure and magnetic properties have been least studied so far and the relative mechanisms are not yet clear.In this paper,we investigated the influence of B on the magnetic performance and microstructure of Nd-Fe-B sintered magnets origi-nally containing copper(Cu),gallium(Ga)and titanium(Ti).It is shown that the intrinsic coercivity has a substantial increment of 2.86 kOe and the remanence has a slight reduction of 0.16 kGs when B content is reduced from 0.980 wt.%to 0.900 wt.%.Moreover,there is a coercivity increment of 27.3%and 65.3%for samples with 0.980 wt.%and 0.900 wt.%B content after PSA,respectively.It is shown that the im-pacts of B content and PSA are significant and their regulation mechanisms are worthwhile to be studied systematically.Furthermore,it is revealed by microstructural analysis that high coercivity of the sample with 0.900 wt.%B after PSA results from the uniform distribution of Ga,Cu,Nd,and the formation of RE 6(Fe,M)14(RE=Pr,Nd,M=Cu,Ga)compound in triple junction phases.The dilution of Fe content in grain boundary phases(GB phases)also plays an important role.It is found out that decrease of the re-manence is mainly due to reduction of the matrix phase and c-axis alignment degree.In this study,we explored a new path to develop Nd-Fe-B-based sintered magnets with high comprehensive properties by novel approaches through varying B content,PSA technique and co-adding trace elements.展开更多
We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd_(1-x)Y_(x))_(13.80)Fe_(ba1)Al_(0.24)Cu_(0.1)B_(6.04)(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magn...We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd_(1-x)Y_(x))_(13.80)Fe_(ba1)Al_(0.24)Cu_(0.1)B_(6.04)(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magnetic properties as well as service performances of the magnets were also systematically investigated.The phase constituents of the magnets have no obvious variation within the whole range of Y content,while the main phase grains form in-situ core-shell structure where Y gathers in the core and Nd mainly distributes in the shell.Compared with pure Nd-Fe-B magnets,the magnetic performances of Y substituted magnets slightly decrease on account of the poor intrinsic magnetic properties of Y_(2)Fe_(14)B.Fortunately,the μ_(O)M_(r),μ_(O)H_(cj) and(BH)_(max) of the 20 at% Y magnet still remain at a high level of 1.325 kG,1.173 kOe and 342.884 kj/m^(3),which approaches the performances of commercial N45-grade magnet.The service performances of Y substituted magnets indicate that though the surface corrosion products and Vickers hardness of the NdY-Fe-B magnets increase to a certain extent compared to Nd-Fe-B,the magnets with Y substitution still display relatively good service performances.Therefore,on the basis of sacrificing little partial magnetic and service performances,Y substituted Nd can still prepare NdY-Fe-B medium-grade magnets.By this way,we achieve the balanced utilization of rare earth resources,which has significant meanings for the industry and scientific research.展开更多
We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly ...We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly by 9.9 kOe and microstructural analysis suggested that Tb favored the formation of the(Nd,Tb)_(2)Fe_(14)B shell phase in the outer region of the matrix grains.The first magnetization reversal and the dynamic successive domain propagation process were detected with a magneto-optical Kerr microscope.For the TbF_(3)-diffused magnet,the magnetization reversal appeared at a larger applied field and the degree of simultaneous magnetization reversal decreased compared with an annealed magnet.During demagnetization after full magnetization,the occurrence of domain wall motion(DWM)in the reproduced multi-domain regions was observed by the step method.The maximum polarization change resulting from the reproduced DWM was inversely related to the coercivity.The increased coercivity for the diffused magnet was mainly attributed to the more difficult nucleation of the magnetic reversed region owing to the improved magneto-crystalline anisotropy field as a result of Tb diffusion.展开更多
The thermal expansion behavior of sintered Nd–Fe–B magnets is a crucial parameter for production and application.However, this aspect has not been thoroughly investigated. In this study, three different sintered Nd...The thermal expansion behavior of sintered Nd–Fe–B magnets is a crucial parameter for production and application.However, this aspect has not been thoroughly investigated. In this study, three different sintered Nd–Fe–B magnets with varying Co content(Co = 0, 6, 12 wt%) were prepared using the conventional powder metallurgy method, and four magnets oriented under different magnetic fields were prepared to compare. The thermal expansion behavior for the magnets was investigated using a linear thermal dilatometry in the temperature range of 20℃–500℃. It was found that, the coefficient of thermal expansion(CTE) increases with the increase of Co contents, while the anisotropy of thermal expansion decreases.The introduction of Co leads to continuous changes from negative to positive thermal expansion in the vertically oriented direction, which is important for the development of zero thermal expansion magnets. The thermal expansion of nonoriented magnets was found to be isotropic. Additionally, the anisotropy of thermal expansion increases with the increase of orientation degree. These results have important implications for the development of sintered Nd–Fe–B with controllable CTE.展开更多
New energy vehicles and offshore wind power industries have a high demand for sintered Nd-Fe-B magnets with high intrinsic coercivity and high corrosion resistance.In this study,the magnetic properties,anticorrosion p...New energy vehicles and offshore wind power industries have a high demand for sintered Nd-Fe-B magnets with high intrinsic coercivity and high corrosion resistance.In this study,the magnetic properties,anticorrosion properties,and micro structure of Nd-Fe-B sintered magnets with the intergranular addition of low-melting-point eutectic Tb_(68)Ni_(32) alloy powders were investigated.The aim is to determine if the addition of Tb_(68)Ni_(32) can improve these properties.A low melting-point eutectic alloy Tb_(68)Ni_(32) powders was prepared as a grain boundary additive and blended with the master alloy powders prior to sintering.The coercivity of the resultant magnets gradually increases from 1468 to 2151 kA/m by adding increasing amounts of Tb_(68)Ni_(32).At the same time,the remanence first increases and then slightly decreases.After studying the microstructure and elemental composition of the Tb_(68)Ni_(32) added magnets,it is found that the significant increase in coercivity and the negligible reduction in remanence is due to densificatio n,improved grain orientation,a unifo rm and continuous boundary phase distribution,as well as the generation of a(Nd,Pr,Tb)_(2) Fe_(14)B "core-shell" structure surrounding the main-phase grain.Moreover,the corrosion resistance of the magnet is greatly improved owing to the enhancement of electrochemical stability,as well as the optimization of the distribution and morphology of the intergranular phase.展开更多
Post-sinter annealing process plays an important role in the microstructures and magnetic properties of the Nd-Fe-B sintered magnets.In this paper,systematically investigated are the magnetic properties and microstruc...Post-sinter annealing process plays an important role in the microstructures and magnetic properties of the Nd-Fe-B sintered magnets.In this paper,systematically investigated are the magnetic properties and microstructures of the as-sintered and post-sinter annealed Nd-Fe-B magnets with Pr-Fe-Ga boundary addition.Two choice consecutive annealing methods are adopted at high and low temperatures,namely the 1 st annealing at 880℃ for 2 h and then the 2^(nd) annealing at 440℃ for 3 h.It is exceptional to find out that both the remanence and coercivity are improved after 2^(nd) annealing process for this type of magnet.The coercivity is hugely increased from 10.09 kOe for the as-sintered sample to 17.19 kOe for the 2^(nd) annealed magnet,with a significant increment of 70.37%in coercivity.The extraordinary magnetic properties of B_(r)=14.44 kGs,H_(cj)=17.19 kOe and(BH)_(max)=51.08 MGOe are obtained for the designated Nd-Fe-B sintered magnets without heavy rare earth(HRE)elements manufactured by dual alloy method.The Curie temperature is monotonically decreased from 634 K to 602 K while the c-axis alignment degree is optimized after annealing.Microstructural observation and analysis indicate that the elemental distribution patterns are altered after the 2^(nd) annealing.The diffusion of the aggregate(Pr,Nd,Cu,Ga)-rich phase from triple junctions into the grain boundary regions is ascribed to the formation of thin and continuous grain boundary layer,which is critical to improve the microstructures and magnetic properties.展开更多
SmCo_(5)sintered magnets with good thermal stability are mainly used in high-temperature field.In this study,two types of SmCo_(5) powders with different nominal z values were mixed and synthesized into SmCo_(5) magne...SmCo_(5)sintered magnets with good thermal stability are mainly used in high-temperature field.In this study,two types of SmCo_(5) powders with different nominal z values were mixed and synthesized into SmCo_(5) magnets by the traditional powder metallurgy method.The magnetic properties of the SmCo_(5) sintered magnet are maximum energy product of(BH)_(max)=172.29 kJ·m^(-3),remanence of B_(r)=7.47×10^(5)A·m^(-1)and coercivity of H_(ci)=2.42 T.The results show that there are three coexisting phases in the magnet,which are SmCo_(5)phase,Sm_(2)Co_(7)phase and Sm_(2)O_(3)phase.The microstructural observation indicates that the average grain size in the magnet is about 8μm,and the high coercivity of this magnet is attributed to these fine grains.X-ray diffraction(XRD)and electron backscatter diffraction(EBSD)results indicate that the magnet has a well-aligned(00l)orientation texture.展开更多
The origin of low coercivity of high La-Cecontaining Nd-Fe-B sintered magnets was analyzed based on characterization of the microstructure,magnetic domain structure,and magnetization reversal process.It can be found t...The origin of low coercivity of high La-Cecontaining Nd-Fe-B sintered magnets was analyzed based on characterization of the microstructure,magnetic domain structure,and magnetization reversal process.It can be found that the coercivity of magnet decreases sharply and the ratio value of coercivity(H_(cj))to anisotropic field(H_(A))is below the theoretical value when the amount of La-Ce substitution for Nd is more than 40 wt%.The grain boundaries with poor magnetic isolation in the high La-Cecontaining Nd-Fe-B sintered magnets play an important role in reducing the coercivity of the magnet.In addition,a larger proportion of the reversible portions can be found for the magnet with a large content of La-Ce,which will lead to the low performance of the magnet.展开更多
High energy products (BH) max of 365 and 310 kJ·m -3 with intrinsic coercivity iH c of 1640 kA·m -1 of NdFeB sintered magnets were produced. Some new techniques were applied, such as thin NdF...High energy products (BH) max of 365 and 310 kJ·m -3 with intrinsic coercivity iH c of 1640 kA·m -1 of NdFeB sintered magnets were produced. Some new techniques were applied, such as thin NdFeB ingot technique, narrow particle distribution on jet mill, low oxygen content control and high aligned magnetic field press. It is necessary to produce thin NdFeB ingot with fine flake crystal, narrow particle distribution, the average size of NdFeB powders less than 4.0 μm, uniform microstructure, high oriented Nd 2Fe 14B small grains, and finally high performance NdFeB sintered magnets were prepared.展开更多
The coercivity,microstructure,and magnetic domain structure of Nd-Fe-B sintered magnets by grain boundary diffusion process(GBDP) with TbH3 nanoparticles were systematically investigated.Compared to the original magne...The coercivity,microstructure,and magnetic domain structure of Nd-Fe-B sintered magnets by grain boundary diffusion process(GBDP) with TbH3 nanoparticles were systematically investigated.Compared to the original magnet,the coercivity(Hci) of the GBDP magnets improved from 1702 to 2374 kA·m^(-1) with few remanence reduced from 1.338 to 1.281 T.Electron probe microanalysis(EPMA) analysis showed that Tb diffused along grain boundary,mainly concentrated in the boundary layer of the main phase,and formed a core-shell structure.Magneto-optical Kerr optical microscope(MOKE) analysis showed that there were two types of magnetic domain reversal in one grain:gradual reversal(GR) and abrupt reversal(AR).When the applied field decreased from saturated magnetic field,the reversal magnetic domain nucleated and then spread over the whole grain gradually,which was called GR.However,some grains kept the single domain state until Hh which was a value of reverse direction applied field in second quadrant in hysteresis loops.When the applied field increased above Hh,reversed magnetic domain would suddenly appear and occupy most of the area of the grain,which was called AR.That is because AR grains have higher reversed magnetic domain nucleation field(HRN2) than GR grains(HRN1).After GBDP,the area of AR region increased obviously and GR region decreased accordingly,indicating that the core-shell structure could change GR grain into AR grain.The coreshell structure could suppress flipping of the magnetization of the grains due to the large magnetic anisotropy of Tbrich shell.Therefore,large AR area led to high coercivity.展开更多
High performance magnets not only have high magnetic properties, but also have good homogeneity. The homogeneous of Nd14.2DyxAl0.8Cu0.1B6.2Febal. bulk magnets was studied. The sizes of the samples produced by conventi...High performance magnets not only have high magnetic properties, but also have good homogeneity. The homogeneous of Nd14.2DyxAl0.8Cu0.1B6.2Febal. bulk magnets was studied. The sizes of the samples produced by conventional sintering process were 53×50.5×25.3/40.2/50.4/61.0 mm. The magnetic character and microstructure of the samples were determined by NIM-10000H hysteresigraph, optical metaloscope, and SEM respectively. The results show that the Hcj reduces with increasing C content at the same process parameters. And the Hcj shows dependence not only on the ageing processing but also on the size of the bulk and loading capacity etc. The Hcj increases with prolonging ageing time and the ageing time should be different with different size of the bulk. With the increase of the loading capacity, the Hcj reduces promptly and is very inhomogeneous. The microstructure of the samples shows that the grain of the hard magnetic phase is finer and the neodymium-rich boundary is distributed homogeneously with prolonging ageing time. And so is the sample in a small amount of the bulks.展开更多
Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In presen...Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In present study, we have developed an effective route to obtain recycled sintered magnets from Nd-Fe-B sintered magnet sludges by calcium reduction-diffusion(RD) process. Compared to conventional recycling process, our research is focused on recovering most of the useful elements, including Nd, Pr, Dy, Co, and Fe together instead of just rare earth elements. To improve the recycling efficiency and reduce pollution, the co-precipitating parameters were simulated and calculated using MATLAB software. Most of useful elements were recovered by a co-precipitation method, and the obtained composite powders were then directly fabricated as recycled Nd-Fe-B powders by a calcium reduction-diffusion(RD) method. The recovery rates are 98%, 99%, 99%, 93%, and 99%, for Nd, Pr, Dy, Co, and Fe, respectively. The amount of useful elements contained in the recovered composite powders is greater than99.71 wt%. The process of RD for synthesizing NdFeB and subsequently removing CaO was thoroughly investigated. Furthermore, the recycled Nd-Fe-B magnet exhibits a remanence of 1.1 T, a coercivity of1053 kA/m, and an energy product of 235.6 kJ/m~3, respectively, indicating that recycled Nd-Fe-B sintered magnet was successfully recovered from the severely contaminated sludges via an effective recycling route.展开更多
Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in active environments.The current paper evaluated the anticorrosion characteristics of multilayer titanium nitride ceramic c...Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in active environments.The current paper evaluated the anticorrosion characteristics of multilayer titanium nitride ceramic coating applied through cathodic arc physical vapour deposition(CAPVD) for protection of sintered NdFeB permanent magnets.The performance of ceramic coating was compared to the electrodeposited nickel coating having a copper interlayer.Electrochemical impedance spectroscopy(EIS) and cyclic polar...展开更多
The influences of solidification rate on the microstructures of cast strips and corresponding sintered NdFeB magnets were investigated. The experimental results show that the volume fraction and size of columnar grain...The influences of solidification rate on the microstructures of cast strips and corresponding sintered NdFeB magnets were investigated. The experimental results show that the volume fraction and size of columnar grains vary with the wheel speed V, and the fraction is highest to more than 90% with 3.5μm in average width at V = 2m·s-1. The reasons for the improved magnetic performance were discussed based on the micromagnetic theory and microstructure analyses of the strips and sintered magnets. The magnetic properties of sintered NdFeB magnets made from the (Nd,Dy)13.0(Fe,Ga, Al)80.5B6.5 cast strip which was obtained at V = 2 m·s-1 are as follows: Br = 1.15 T( 11.25 kG), iHc = 2799 kA·m-1 (35.2 kOe) and (BH)max = 242 kJ·m-3(30.35 MGOe).展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.52261037)self-deployed Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(Grant No.E055B002)+2 种基金the Project of Baotou City Science and Technology(Grant No.XM2022BT04)the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-3)the Key Research Project of Jiangxi Province(Grant No.20203ABC28W006)。
文摘As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sintered magnets,the influences of Ga and Zr on GBD were investigated in this work.The results show that the Zr-doped magnet has the highest coercivity increment(7.97 kOe)by GBD,which is almost twice that of the Ga-doped magnet(4.32 kOe)and the magnet without Ga and Zr(3.24 kOe).Microstructure analysis shows that ZrB_(2)formed in the Zr-doped magnet plays a key role in increasing the diffusion depth.A continuous diffusion channel in the magnet can form because of the presence of ZrB_(2).ZrB_(2)can also increase the defect concentration in GB phases,which can facilitate GBD.Although Ga can also improve the diffusion depth,its effect is not very obvious.The micromagnetic simulation based on the experimental results also proves that the distribution of Tb in the Zr-doped magnet after GBD is beneficial to coercivity.This study reveals that the doping elements Ga and Zr in Nd–Fe–B play an important role in GBD,and could provide a new perspective for researchers to improve the effects of GBD.
文摘Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time dependence of corrosion rates of Nd-Fe-B sintered magnets in different acid solutions were tested. Microstructures of corroded Nd-Fe-B sintered magnets were investigated by means of SEM and AFM. The results indicate that in strong acid solutions of similar hydrogen ion concentration, the corrosion current increases in the order of HCl 〉 H3SO4 〉 HNO3 solution and Nd-Fe-B sintered magnets are passivated in phosphate acid and oxalic acid. Within 25 min, the corrosion rates of Nd-Fe-B sintered magnets in H2SO4 and H3PO4 solutions show a declining trend with immersion time, while in HNO3 and HCl solutions the corrosion rates are rising. And in H2C2O4 solution, weight of the magnets increases. The brim of Nd-Fe-B sintered magnets is corroded rather seriously and the size of the magnets changed greatly in nitric acid. The surfaces of the corroded magnets in the above mentioned acid solutions are all coarse.
文摘The influence of mean particle size on magnetic properties ofSm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets, prepared by the conventional powder metallurgy method, was studied. With increasing ballmilling time, mean particle size decreases, specific surface increases, and sintering temperature decreases. The optimum sintering temperature of powders fabricated by baH-milling for 5, 7, 9 and 11 h are 1225, 1225, 1215 and 1215℃ respectively. The optimum value of Br, (BH)max, Hob and Hci of Sm ( Co0.72Fe0. 15 Cu0. 1Zr0. 03 ) 7.5 sintered magnets with powders ball-milling for 9 h and sintering at 1215 ℃ can reach 0.94 T, 708.4 kA·m^-1, 171.9 kJ·m^-3 and 2276.6 kA·m^-1 respectively, and the irreversible flux loss is less than 5 % after the sample ageing at 550 ℃ for 2 h, so the temperature stability improves and the magnets may be expected to be applied in the circumstances of 550 ℃.
文摘The magnetic properties of Nd_(16)Fe_(77)B_7 and Nd_(16)Fe_((61-x))Co_(16)Ga_xB_7(x=0,1,2,4,7)have been measured.It is found that the remanent magnetization(Br),maximum energy product(BH)_(max)and the Curie temperature (T_c)decrease with the increase of Ga content.The coercive force(He)increases with the increase of Ga content when x is less than 2,but decreases when x>2.At x=2,the coercive force reaches its maximum value.It is also found in all the samples investigated that there is a linear relationship between H_c^(1/2)and T^(2/3),which can not be explained by Gaunt's wall barrier model.The temperature dependence of the calculated values of H_v and(4bf) has been discussed.
文摘Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement. The DSC measurements showed that hydrogenation of Nd-rich phase occurred in the temperature range of 40-185 ℃, hydrogenation of the tetragonal (Ф) phase in the temperature range of 185-220 ℃, as well as the disproportionation of the Ф phase that occurred in a broad temperature range from around 500 to 800 ℃. The hydrogenation kinetics measurements indicated that hydrogen absorption of the bulk magnets at 50 ℃ absorbed more hydrogen than at 150 ℃, although this procedure was slower at 50 ℃ than at 150℃. This phenomenon was discussed by means of pressure-concentration-temperature (p-c-T) diagrams.
基金This work was financially supported by the National Natural Science Foundation of China (No.50371019) and Beijing Municipal Science & Technology Commission Key Project (D0406002000091).
文摘Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The magnetic properties and mechanical properties due to the formation of AGG grains in Nd-Fe-B sintered magnets were tested. The results show that the magnetic properties, especially the rectangularity were severely deteriorated after the formation of the AGG grains and a step was shown on the demagnetization curve, and the occurrence of AGG may account for the poor rectangularity and existence of the step on demagnetization curve according to the statistical model of magnetization reversal. The fracture toughness and bending strength are lowered because of the stress concentration in the AGG grains. The SEM images show that the formation of AGG grains is caused by the solid sintering due to the absence of RE-rich phase. Statistical model of magnetization reversal can qualitative by explain the dependence of the magnetization reversal behavior on the grain size in the Nd-Fe-B sintered magnets.
基金supported by the National Natural Science Foundation of China(Nos.52371188,52061015)Young Talents Program of Jiangxi Provincial Major Discipline Academic and Technical Leaders Training Program(No.20212BCJ23008)+5 种基金Jiangxi Province Double Thousand Plan(No.jxsq2023201085),Jiangxi Provincial Natural Science Foundation(No.20212BAB214018)the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology(No.JXUSTQJYX2020003)National College Students Innovation and Entrepreneurship Training Program(No.202110407013)Technology Program of Fujian Province(Nos.2020H6027,2021T3063)Self-deployed Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(No.E055B002)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2021–3).
文摘In traditional Nd-Fe-B-based sintered magnets,the composition,role of each element and microstruc-tures have been extensively investigated globally since they were invented in 1983.However,the effects of boron(B)content and post-sinter annealing(PSA)on the microstructure and magnetic properties have been least studied so far and the relative mechanisms are not yet clear.In this paper,we investigated the influence of B on the magnetic performance and microstructure of Nd-Fe-B sintered magnets origi-nally containing copper(Cu),gallium(Ga)and titanium(Ti).It is shown that the intrinsic coercivity has a substantial increment of 2.86 kOe and the remanence has a slight reduction of 0.16 kGs when B content is reduced from 0.980 wt.%to 0.900 wt.%.Moreover,there is a coercivity increment of 27.3%and 65.3%for samples with 0.980 wt.%and 0.900 wt.%B content after PSA,respectively.It is shown that the im-pacts of B content and PSA are significant and their regulation mechanisms are worthwhile to be studied systematically.Furthermore,it is revealed by microstructural analysis that high coercivity of the sample with 0.900 wt.%B after PSA results from the uniform distribution of Ga,Cu,Nd,and the formation of RE 6(Fe,M)14(RE=Pr,Nd,M=Cu,Ga)compound in triple junction phases.The dilution of Fe content in grain boundary phases(GB phases)also plays an important role.It is found out that decrease of the re-manence is mainly due to reduction of the matrix phase and c-axis alignment degree.In this study,we explored a new path to develop Nd-Fe-B-based sintered magnets with high comprehensive properties by novel approaches through varying B content,PSA technique and co-adding trace elements.
基金Project supported by the Key Research and Development Program of Shandong Province (2019JZZY010321)the Major Project of "Science and Technology Innovation 2025" in Ningbo City (2020Z050)+1 种基金Ningbo Natural Science Foundation (202003N4352)the Kunpeng Project in Zhejiang Province and National Natural Science Foundation of China (52101238)。
文摘We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd_(1-x)Y_(x))_(13.80)Fe_(ba1)Al_(0.24)Cu_(0.1)B_(6.04)(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magnetic properties as well as service performances of the magnets were also systematically investigated.The phase constituents of the magnets have no obvious variation within the whole range of Y content,while the main phase grains form in-situ core-shell structure where Y gathers in the core and Nd mainly distributes in the shell.Compared with pure Nd-Fe-B magnets,the magnetic performances of Y substituted magnets slightly decrease on account of the poor intrinsic magnetic properties of Y_(2)Fe_(14)B.Fortunately,the μ_(O)M_(r),μ_(O)H_(cj) and(BH)_(max) of the 20 at% Y magnet still remain at a high level of 1.325 kG,1.173 kOe and 342.884 kj/m^(3),which approaches the performances of commercial N45-grade magnet.The service performances of Y substituted magnets indicate that though the surface corrosion products and Vickers hardness of the NdY-Fe-B magnets increase to a certain extent compared to Nd-Fe-B,the magnets with Y substitution still display relatively good service performances.Therefore,on the basis of sacrificing little partial magnetic and service performances,Y substituted Nd can still prepare NdY-Fe-B medium-grade magnets.By this way,we achieve the balanced utilization of rare earth resources,which has significant meanings for the industry and scientific research.
基金the National Natural Science Foundation of China(Grant No.52101238)the“Pioneer”and“Leading Goose”Research and Development Program of Zhejiang(Grant No.2021C01190)Major Project of Ningbo Science and Technology Innovation 2025(Grant No.2020Z046)。
文摘We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly by 9.9 kOe and microstructural analysis suggested that Tb favored the formation of the(Nd,Tb)_(2)Fe_(14)B shell phase in the outer region of the matrix grains.The first magnetization reversal and the dynamic successive domain propagation process were detected with a magneto-optical Kerr microscope.For the TbF_(3)-diffused magnet,the magnetization reversal appeared at a larger applied field and the degree of simultaneous magnetization reversal decreased compared with an annealed magnet.During demagnetization after full magnetization,the occurrence of domain wall motion(DWM)in the reproduced multi-domain regions was observed by the step method.The maximum polarization change resulting from the reproduced DWM was inversely related to the coercivity.The increased coercivity for the diffused magnet was mainly attributed to the more difficult nucleation of the magnetic reversed region owing to the improved magneto-crystalline anisotropy field as a result of Tb diffusion.
基金the National Key Research and Development Program of China (Grant No. 2021YFB3502900)the National Natural Science Foundation of China (Grant No. 51871063)+1 种基金the Key Technology Research and Development Program of Shandong Province, China (Grant No. 2019JZZY020210)the Major Projects in Inner Mongolia Autonomous Region, China。
文摘The thermal expansion behavior of sintered Nd–Fe–B magnets is a crucial parameter for production and application.However, this aspect has not been thoroughly investigated. In this study, three different sintered Nd–Fe–B magnets with varying Co content(Co = 0, 6, 12 wt%) were prepared using the conventional powder metallurgy method, and four magnets oriented under different magnetic fields were prepared to compare. The thermal expansion behavior for the magnets was investigated using a linear thermal dilatometry in the temperature range of 20℃–500℃. It was found that, the coefficient of thermal expansion(CTE) increases with the increase of Co contents, while the anisotropy of thermal expansion decreases.The introduction of Co leads to continuous changes from negative to positive thermal expansion in the vertically oriented direction, which is important for the development of zero thermal expansion magnets. The thermal expansion of nonoriented magnets was found to be isotropic. Additionally, the anisotropy of thermal expansion increases with the increase of orientation degree. These results have important implications for the development of sintered Nd–Fe–B with controllable CTE.
基金Project supported by the Science and Technology Major Project of Guangxi Province(AA18242023-1)the National Key R&D Program of China(2016YFB0700901)+1 种基金the National Natural Science Foundation of China(51761007)the Natural Science Foundation of Guangxi Province(2017AD23031,AD17292001)。
文摘New energy vehicles and offshore wind power industries have a high demand for sintered Nd-Fe-B magnets with high intrinsic coercivity and high corrosion resistance.In this study,the magnetic properties,anticorrosion properties,and micro structure of Nd-Fe-B sintered magnets with the intergranular addition of low-melting-point eutectic Tb_(68)Ni_(32) alloy powders were investigated.The aim is to determine if the addition of Tb_(68)Ni_(32) can improve these properties.A low melting-point eutectic alloy Tb_(68)Ni_(32) powders was prepared as a grain boundary additive and blended with the master alloy powders prior to sintering.The coercivity of the resultant magnets gradually increases from 1468 to 2151 kA/m by adding increasing amounts of Tb_(68)Ni_(32).At the same time,the remanence first increases and then slightly decreases.After studying the microstructure and elemental composition of the Tb_(68)Ni_(32) added magnets,it is found that the significant increase in coercivity and the negligible reduction in remanence is due to densificatio n,improved grain orientation,a unifo rm and continuous boundary phase distribution,as well as the generation of a(Nd,Pr,Tb)_(2) Fe_(14)B "core-shell" structure surrounding the main-phase grain.Moreover,the corrosion resistance of the magnet is greatly improved owing to the enhancement of electrochemical stability,as well as the optimization of the distribution and morphology of the intergranular phase.
基金supported by the National Natural Science Foundation of China(Grant Nos.51901089 and 52061015)the Key Research and Development Program of Jiangxi Province(No.20201BBE51010)+2 种基金China Postdoctoral Science foundation(Grant No.2020M682064)Postdoctoral Science foundation of Jiangxi Province(Grant No.2020KY19)the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology(No.JXUSTQJYX2020003)。
文摘Post-sinter annealing process plays an important role in the microstructures and magnetic properties of the Nd-Fe-B sintered magnets.In this paper,systematically investigated are the magnetic properties and microstructures of the as-sintered and post-sinter annealed Nd-Fe-B magnets with Pr-Fe-Ga boundary addition.Two choice consecutive annealing methods are adopted at high and low temperatures,namely the 1 st annealing at 880℃ for 2 h and then the 2^(nd) annealing at 440℃ for 3 h.It is exceptional to find out that both the remanence and coercivity are improved after 2^(nd) annealing process for this type of magnet.The coercivity is hugely increased from 10.09 kOe for the as-sintered sample to 17.19 kOe for the 2^(nd) annealed magnet,with a significant increment of 70.37%in coercivity.The extraordinary magnetic properties of B_(r)=14.44 kGs,H_(cj)=17.19 kOe and(BH)_(max)=51.08 MGOe are obtained for the designated Nd-Fe-B sintered magnets without heavy rare earth(HRE)elements manufactured by dual alloy method.The Curie temperature is monotonically decreased from 634 K to 602 K while the c-axis alignment degree is optimized after annealing.Microstructural observation and analysis indicate that the elemental distribution patterns are altered after the 2^(nd) annealing.The diffusion of the aggregate(Pr,Nd,Cu,Ga)-rich phase from triple junctions into the grain boundary regions is ascribed to the formation of thin and continuous grain boundary layer,which is critical to improve the microstructures and magnetic properties.
基金the State Key Program of Natural Science Foundation of China(No.51331003)the International S&T Cooperation Program of China(No.2015DFG52020)。
文摘SmCo_(5)sintered magnets with good thermal stability are mainly used in high-temperature field.In this study,two types of SmCo_(5) powders with different nominal z values were mixed and synthesized into SmCo_(5) magnets by the traditional powder metallurgy method.The magnetic properties of the SmCo_(5) sintered magnet are maximum energy product of(BH)_(max)=172.29 kJ·m^(-3),remanence of B_(r)=7.47×10^(5)A·m^(-1)and coercivity of H_(ci)=2.42 T.The results show that there are three coexisting phases in the magnet,which are SmCo_(5)phase,Sm_(2)Co_(7)phase and Sm_(2)O_(3)phase.The microstructural observation indicates that the average grain size in the magnet is about 8μm,and the high coercivity of this magnet is attributed to these fine grains.X-ray diffraction(XRD)and electron backscatter diffraction(EBSD)results indicate that the magnet has a well-aligned(00l)orientation texture.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0700902)the National Natural Science Foundation of China(No.51371002)+1 种基金the International S&T Cooperation Program of China(No.2015DFG52020)the Program of Top Disciplines Construction in Beijing(No.PXM2019_014204_500031)。
文摘The origin of low coercivity of high La-Cecontaining Nd-Fe-B sintered magnets was analyzed based on characterization of the microstructure,magnetic domain structure,and magnetization reversal process.It can be found that the coercivity of magnet decreases sharply and the ratio value of coercivity(H_(cj))to anisotropic field(H_(A))is below the theoretical value when the amount of La-Ce substitution for Nd is more than 40 wt%.The grain boundaries with poor magnetic isolation in the high La-Cecontaining Nd-Fe-B sintered magnets play an important role in reducing the coercivity of the magnet.In addition,a larger proportion of the reversible portions can be found for the magnet with a large content of La-Ce,which will lead to the low performance of the magnet.
文摘High energy products (BH) max of 365 and 310 kJ·m -3 with intrinsic coercivity iH c of 1640 kA·m -1 of NdFeB sintered magnets were produced. Some new techniques were applied, such as thin NdFeB ingot technique, narrow particle distribution on jet mill, low oxygen content control and high aligned magnetic field press. It is necessary to produce thin NdFeB ingot with fine flake crystal, narrow particle distribution, the average size of NdFeB powders less than 4.0 μm, uniform microstructure, high oriented Nd 2Fe 14B small grains, and finally high performance NdFeB sintered magnets were prepared.
基金financially supported by the National Key Research and Development Program of China(No.2018YFC1903405)Advanced Subject of Beijing+4 种基金China(No.PXM2019014204500031)the National Natural Science Foundation of China(Nos.5137100251331003 and 51201037)the 2011 Cooperative Innovation Center of Beijing University of Technologythe Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions。
文摘The coercivity,microstructure,and magnetic domain structure of Nd-Fe-B sintered magnets by grain boundary diffusion process(GBDP) with TbH3 nanoparticles were systematically investigated.Compared to the original magnet,the coercivity(Hci) of the GBDP magnets improved from 1702 to 2374 kA·m^(-1) with few remanence reduced from 1.338 to 1.281 T.Electron probe microanalysis(EPMA) analysis showed that Tb diffused along grain boundary,mainly concentrated in the boundary layer of the main phase,and formed a core-shell structure.Magneto-optical Kerr optical microscope(MOKE) analysis showed that there were two types of magnetic domain reversal in one grain:gradual reversal(GR) and abrupt reversal(AR).When the applied field decreased from saturated magnetic field,the reversal magnetic domain nucleated and then spread over the whole grain gradually,which was called GR.However,some grains kept the single domain state until Hh which was a value of reverse direction applied field in second quadrant in hysteresis loops.When the applied field increased above Hh,reversed magnetic domain would suddenly appear and occupy most of the area of the grain,which was called AR.That is because AR grains have higher reversed magnetic domain nucleation field(HRN2) than GR grains(HRN1).After GBDP,the area of AR region increased obviously and GR region decreased accordingly,indicating that the core-shell structure could change GR grain into AR grain.The coreshell structure could suppress flipping of the magnetization of the grains due to the large magnetic anisotropy of Tbrich shell.Therefore,large AR area led to high coercivity.
文摘High performance magnets not only have high magnetic properties, but also have good homogeneity. The homogeneous of Nd14.2DyxAl0.8Cu0.1B6.2Febal. bulk magnets was studied. The sizes of the samples produced by conventional sintering process were 53×50.5×25.3/40.2/50.4/61.0 mm. The magnetic character and microstructure of the samples were determined by NIM-10000H hysteresigraph, optical metaloscope, and SEM respectively. The results show that the Hcj reduces with increasing C content at the same process parameters. And the Hcj shows dependence not only on the ageing processing but also on the size of the bulk and loading capacity etc. The Hcj increases with prolonging ageing time and the ageing time should be different with different size of the bulk. With the increase of the loading capacity, the Hcj reduces promptly and is very inhomogeneous. The microstructure of the samples shows that the grain of the hard magnetic phase is finer and the neodymium-rich boundary is distributed homogeneously with prolonging ageing time. And so is the sample in a small amount of the bulks.
基金Project supported by the Beijing Municipal Natural Science Foundation(2172012)the International S&T Cooperation Program of China(2015DFG52020)the National High Technology Research and Development Program of China(2012AA063201)
文摘Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In present study, we have developed an effective route to obtain recycled sintered magnets from Nd-Fe-B sintered magnet sludges by calcium reduction-diffusion(RD) process. Compared to conventional recycling process, our research is focused on recovering most of the useful elements, including Nd, Pr, Dy, Co, and Fe together instead of just rare earth elements. To improve the recycling efficiency and reduce pollution, the co-precipitating parameters were simulated and calculated using MATLAB software. Most of useful elements were recovered by a co-precipitation method, and the obtained composite powders were then directly fabricated as recycled Nd-Fe-B powders by a calcium reduction-diffusion(RD) method. The recovery rates are 98%, 99%, 99%, 93%, and 99%, for Nd, Pr, Dy, Co, and Fe, respectively. The amount of useful elements contained in the recovered composite powders is greater than99.71 wt%. The process of RD for synthesizing NdFeB and subsequently removing CaO was thoroughly investigated. Furthermore, the recycled Nd-Fe-B magnet exhibits a remanence of 1.1 T, a coercivity of1053 kA/m, and an energy product of 235.6 kJ/m~3, respectively, indicating that recycled Nd-Fe-B sintered magnet was successfully recovered from the severely contaminated sludges via an effective recycling route.
文摘Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in active environments.The current paper evaluated the anticorrosion characteristics of multilayer titanium nitride ceramic coating applied through cathodic arc physical vapour deposition(CAPVD) for protection of sintered NdFeB permanent magnets.The performance of ceramic coating was compared to the electrodeposited nickel coating having a copper interlayer.Electrochemical impedance spectroscopy(EIS) and cyclic polar...
基金Project supported by RE Application Engineering of National Ten-Fifth Year Plan of China (2002BA315A-1)
文摘The influences of solidification rate on the microstructures of cast strips and corresponding sintered NdFeB magnets were investigated. The experimental results show that the volume fraction and size of columnar grains vary with the wheel speed V, and the fraction is highest to more than 90% with 3.5μm in average width at V = 2m·s-1. The reasons for the improved magnetic performance were discussed based on the micromagnetic theory and microstructure analyses of the strips and sintered magnets. The magnetic properties of sintered NdFeB magnets made from the (Nd,Dy)13.0(Fe,Ga, Al)80.5B6.5 cast strip which was obtained at V = 2 m·s-1 are as follows: Br = 1.15 T( 11.25 kG), iHc = 2799 kA·m-1 (35.2 kOe) and (BH)max = 242 kJ·m-3(30.35 MGOe).