The iron ore sintering process is the main source of SO_2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO_2 emissions in the flue gas in the iron ore ...The iron ore sintering process is the main source of SO_2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO_2 emissions in the flue gas in the iron ore sintering process by adding urea at a given distance from the sintering grate bar. In this paper, a pilot-scale experiment was carried out in a commercial sintering plant. The results showed that, compared to the SO_2 concentration in flue gas without urea addition, the SO_2 concentration decreased substantially from 694.2 to 108.0 mg/m^3 when 0.10wt% urea was added. NH_3 decomposed by urea reacted with SO_2 to produce(NH_4)_2SO_4, decreasing the SO_2 concentration in the flue gas.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.U1260101 and 51504003)the Project of Science and Technology Development of Anhui Province,China (No.1501041126)
文摘The iron ore sintering process is the main source of SO_2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO_2 emissions in the flue gas in the iron ore sintering process by adding urea at a given distance from the sintering grate bar. In this paper, a pilot-scale experiment was carried out in a commercial sintering plant. The results showed that, compared to the SO_2 concentration in flue gas without urea addition, the SO_2 concentration decreased substantially from 694.2 to 108.0 mg/m^3 when 0.10wt% urea was added. NH_3 decomposed by urea reacted with SO_2 to produce(NH_4)_2SO_4, decreasing the SO_2 concentration in the flue gas.