期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reactive Compatibilization of Short-Fiber Reinforced Poly(lactic acid)Biocomposites
1
作者 Phornwalan Nanthananon Manus Seadan +2 位作者 Sommai Pivsa-Art Hiroyuki Hamada Supakij Suttiruengwong 《Journal of Renewable Materials》 SCIE 2018年第6期573-583,共11页
Poor interfacial adhesion between biobased thermoplastics and natural fibers is recognized as a major drawback for biocomposites.To be applicable for the large-scale production,a simple method to handle is of importan... Poor interfacial adhesion between biobased thermoplastics and natural fibers is recognized as a major drawback for biocomposites.To be applicable for the large-scale production,a simple method to handle is of importance.This work presented poly(lactic acid)(PLA)reinforced with short-fiber and three reactive agents including anhydride and epoxide groups were selected as compatibilizers.Biocomposites were prepared by one-step meltmixing methods.The influence of reactive agents on mechanical,dynamic mechanical properties and morphology of PLA biocomposites were investigated.Tensile strength and storage modulus of PLA biocomposites incorporated with epoxide-based reactive agent was increased 13.9%and 37.4%compared to non-compatibilized PLA biocomposite,which was higher than adding anhydride-based reactive agent.SEM micrographs and Molau test exhibited an improvement of interfacial fiber-matrix adhesion in the PLA biocomposites incorporated with epoxide-based reactive agent.FTIR revealed the chemical reaction between the fiber and PLA with the presence of epoxide-based reactive agents. 展开更多
关键词 BIOCOMPOSITE poly(lactic acid) Reactive agent in situ compatibilization interfacial adhesion
下载PDF
CRYSTALLIZATION BEHAVIOR AND MORPHOLOGY OF ONE-STEP REACTION COMPATIBILIZED MICROFIBRILLAR REINFORCED ISOTACTIC POLYPROPYLENE/POLY(ETHYLENE TEREPHTHALATE)(iPP/PET) BLENDS 被引量:3
2
作者 李忠明 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2011年第5期540-551,共12页
One-step reaction compatibilized microfibrillar reinforced iPP/PET blends (CMRB) were successfully prepared through a "slit extrusion-hot stretching-quenching" process. Crystallization behavior and morphology of C... One-step reaction compatibilized microfibrillar reinforced iPP/PET blends (CMRB) were successfully prepared through a "slit extrusion-hot stretching-quenching" process. Crystallization behavior and morphology of CMRB were systematically investigated. Scanning electronic microscopy (SEM) observations showed blurry interface of compatibilized common blend (CCB). The crystallization behavior of neat iPP, CCB, microfibrillar reinforced iPP/PET blend (MRB) and CMRB was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The increase of crystallization temperature and crystallization rate during nonisothermal crystallization process indicated both PET particles and mierofibrils could serve as nucleating agents and PET microfibrils exhibited higher heterogeneous nucleation ability, which were also vividly revealed by results of POM. Compared with MRB sample, CMRB sample has lower crystallization temperature due to existence of PET microfibrils with smaller aspect ratio and wider distribution. In addition, since in situ compatibilizer tends to stay in the interphase, it could also hinder the diffusion ofiPP molecules to the surface of PET phase, leading to decrease of crystallization rate. Two-dimensional wide-angle X-ray diffi:action (2D-WAXD) was preformed to characterize the crystalline structure of the samples by injection molding, and it was found that well-developed PET microfibrils contained in MRB sample promoted formation of t-phase of/PP. 展开更多
关键词 Isotactic polypropylene Poly(ethylene terephthalate) In situ compatibilization Microfibrillar reinforced blends Crystallization behavior.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部