The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low ac...The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low accuracy and strong dependence on prior knowledge,a datadriven situation assessment method is proposed.The clustering and classification are combined,the former is used to mine situational knowledge,and the latter is used to realize rapid assessment.Angle evaluation factor and distance evaluation factor are proposed to transform multi-dimensional air combat information into two-dimensional features.A convolution success-history based adaptive differential evolution with linear population size reduc-tion-means(C-LSHADE-Means)algorithm is proposed.The convolutional pooling layer is used to compress the size of data and preserve the distribution characteristics.The LSHADE algorithm is used to initialize the center of the mean clustering,which over-comes the defect of initialization sensitivity.Comparing experi-ment with the seven clustering algorithms is done on the UCI data set,through four clustering indexes,and it proves that the method proposed in this paper has better clustering performance.A situation assessment model based on stacked autoen-coder and learning vector quantization(SAE-LVQ)network is constructed,and it uses SAE to reconstruct air combat data fea-tures,and uses the self-competition layer of the LVQ to achieve efficient classification.Compared with the five kinds of assess-ments models,the SAE-LVQ model has the highest accuracy.Finally,three kinds of confrontation processes from air combat maneuvering instrumentation(ACMI)are selected,and the model in this paper is used for situation assessment.The assessment results are in line with the actual situation.展开更多
To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First...To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet.展开更多
The battlefield situation changes rapidly because underwater targets'are concealment and the sea environment is uncertain.So,a great number of situation information greatly increase,which need to be dealt with in ...The battlefield situation changes rapidly because underwater targets'are concealment and the sea environment is uncertain.So,a great number of situation information greatly increase,which need to be dealt with in the course of scouting underwater targets.Situation assessment in sea battlefield with a lot of uncertain information is studied,and a new situation assessment method of scouting underwater targets with fixed-wing patrol aircraft is proposed based on the cloud Bayesian network,which overcomes the deficiency of the single cloud model in reasoning ability and the defect of Bayesian network in knowledge representation.Moreover,in the method,the cloud model knowledge deal with the input data of Bayesian network reasoning,and the advantages in knowledge representation of cloud theory and reasoning of Bayesian network are applied;also,the fuzziness and stochasticity of cloud theory in knowledge expression,the reasoning ability of Bayesian network,are combined.Then,the situation assessment model of scouting underwater targets with fixed-wing patrol aircraft is established.Hence,the directed acyclic graph of Bayesian network structure is constructed and the assessment index is determined.Next,the cloud model is used to deal with Bayesian network,and the discrete Bayesian network is obtained.Moreover,after CPT of each node and the transformation between certainty degree and probability are accomplished;the final situation level is obtained through a probability synthesis formula.Therefore,the target type and the operational intention of the other side are deduced to form the battlefield situation.Finally,simulations are carried out,and the rationality and validity of the proposed method are testified by simulation results.By this method,the battlefield situation can be gained.And this method has a wider application range,especially for large sample data processing,and it has better practicability.展开更多
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ...Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.展开更多
A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrum...A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrument, the problem of air combat situation assessment is equivalent to the situation classification problem of air combat data. The fuzzy C-means clustering algorithm is proposed to cluster the selected air combat sample data and the situation classification of the data is determined by the data correlation analysis in combination with the clustering results and the pilots' description of the air combat process. On the basis of semi-supervised naive Bayes classifier, an improved algorithm is proposed based on data classification confidence, through which the situation classification of air combat data is carried out. The simulation results show that the improved algorithm can assess the air combat situation effectively and the improvement of the algorithm can promote the classification performance without significantly affecting the efficiency of the classifier.展开更多
Survivability has emerged as a new phase for the development of network security technique, and quantifying survivability for network system helps to evaluate it exactly for the system in different environments. In th...Survivability has emerged as a new phase for the development of network security technique, and quantifying survivability for network system helps to evaluate it exactly for the system in different environments. In this paper, we adopt a stochastic method called sequential Monte Carlo and try to reflect dynamic evolvement process of network survivability situation from several time sequences. The experiment results show that this method has the features of quantitative description, real-time calculation and dynamic tracking, and it is a good situation assessment solution for network survivability.展开更多
The status of an operator’s situation awareness is one of the critical factors that influence the quality of the missions.Thus the measurement method of the situation awareness status is an important topic to researc...The status of an operator’s situation awareness is one of the critical factors that influence the quality of the missions.Thus the measurement method of the situation awareness status is an important topic to research.So far,there are lots of methods designed for the measurement of situation awareness status,but there is no model that can measure it accurately in real-time,so this work is conducted to deal with such a gap.Firstly,collect the relevant physiological data of operators while they are performing a specific mission,simultaneously,measure their status of situation awareness by using the situation awareness global assessment technique(SAGAT),which is known for accuracy but cannot be used in real-time.And then,after the preprocessing of the raw data,use the physiological data as features,the SAGAT’s results as a label to train a fuzzy cognitive map(FCM),which is an explainable and powerful intelligent model.Also,a hybrid learning algorithm of particle swarm optimization(PSO)and gradient descent is proposed for the FCM training.The final results show that the learned FCM can assess the status of situation awareness accurately in real-time,and the proposed hybrid learning algorithm has better efficiency and accuracy.展开更多
Based on the monitoring results of environmental quality in Yueqing Bay during 2007-2014,the current situation of environmental quality in the bay was analyzed and assessed. The results show that pH,DO,CODMn,petroleum...Based on the monitoring results of environmental quality in Yueqing Bay during 2007-2014,the current situation of environmental quality in the bay was analyzed and assessed. The results show that pH,DO,CODMn,petroleum,and heavy metals( Cu,Pb,Zn,Cd,Hg,As and Cr)in the seawater of Yueqing Bay did not exceed the second class standard of Seawater Quality Standard( GB 3097-1997),but inorganic nitrogen and reactive phosphate in the seawater of Yueqing Bay exceeded the second class standard seriously,and the water quality of the bay was in an eutrophic state; the standard index of evaluation factors of sediment quality was smaller than 1,meeting the demands of sediment quality for environmental protection.展开更多
The situation in Southeast Asia in 2017 was generally stable,as relations with China continued to improve,and progress in maritime consultations continued to develop.I.The political situation is stable and generally m...The situation in Southeast Asia in 2017 was generally stable,as relations with China continued to improve,and progress in maritime consultations continued to develop.I.The political situation is stable and generally manageable Stability is manifested in the following aspects.The governments of the Philippines,Myanmar,Vietnam,Laos are seeking stability and good governance.展开更多
基金supported by the Natural Science Foundation of Shaanxi Province(2020JQ-481,2021JM-224)the Aeronautical Science Foundation of China(201951096002).
文摘The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low accuracy and strong dependence on prior knowledge,a datadriven situation assessment method is proposed.The clustering and classification are combined,the former is used to mine situational knowledge,and the latter is used to realize rapid assessment.Angle evaluation factor and distance evaluation factor are proposed to transform multi-dimensional air combat information into two-dimensional features.A convolution success-history based adaptive differential evolution with linear population size reduc-tion-means(C-LSHADE-Means)algorithm is proposed.The convolutional pooling layer is used to compress the size of data and preserve the distribution characteristics.The LSHADE algorithm is used to initialize the center of the mean clustering,which over-comes the defect of initialization sensitivity.Comparing experi-ment with the seven clustering algorithms is done on the UCI data set,through four clustering indexes,and it proves that the method proposed in this paper has better clustering performance.A situation assessment model based on stacked autoen-coder and learning vector quantization(SAE-LVQ)network is constructed,and it uses SAE to reconstruct air combat data fea-tures,and uses the self-competition layer of the LVQ to achieve efficient classification.Compared with the five kinds of assess-ments models,the SAE-LVQ model has the highest accuracy.Finally,three kinds of confrontation processes from air combat maneuvering instrumentation(ACMI)are selected,and the model in this paper is used for situation assessment.The assessment results are in line with the actual situation.
基金supported by the Provincial Universities Basic Business Expense Scientific Research Projects of Heilongjiang Province(No.2021-KYYWF-0179)the Science and Technology Project of Henan Province(No.212102310991)+2 种基金the Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security(No.AGK2015003)the Key Scientific Research Project of Henan Province(No.21A413001)the Postgraduate Innovation Project of Harbin Normal University(No.HSDSSCX2021-121).
文摘To address the problem of network security situation assessment in the Industrial Internet,this paper adopts the evidential reasoning(ER)algorithm and belief rule base(BRB)method to establish an assessment model.First,this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge.Second,the evaluation indicators are fused with expert knowledge and the ER algorithm.According to the fusion results,a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established,and the projection covariance matrix adaptive evolution strategy(P-CMA-ES)is used to optimize the model parameters.This method can not only utilize semiquantitative information effectively but also use more uncertain information and prevent the problem of combinatorial explosion.Moreover,it solves the problem of the uncertainty of expert knowledge and overcomes the problem of low modeling accuracy caused by insufficient data.Finally,a network security situation assessment case of the Industrial Internet is analyzed to verify the effectiveness and superiority of the method.The research results showthat this method has strong applicability to the network security situation assessment of complex Industrial Internet systems.It can accurately reflect the actual network security situation of Industrial Internet systems and provide safe and reliable suggestions for network administrators to take timely countermeasures,thereby improving the risk monitoring and emergency response capabilities of the Industrial Internet.
基金Natural Science Foundation of Shangdong,Grant/Award Number:ZR2019MF065.
文摘The battlefield situation changes rapidly because underwater targets'are concealment and the sea environment is uncertain.So,a great number of situation information greatly increase,which need to be dealt with in the course of scouting underwater targets.Situation assessment in sea battlefield with a lot of uncertain information is studied,and a new situation assessment method of scouting underwater targets with fixed-wing patrol aircraft is proposed based on the cloud Bayesian network,which overcomes the deficiency of the single cloud model in reasoning ability and the defect of Bayesian network in knowledge representation.Moreover,in the method,the cloud model knowledge deal with the input data of Bayesian network reasoning,and the advantages in knowledge representation of cloud theory and reasoning of Bayesian network are applied;also,the fuzziness and stochasticity of cloud theory in knowledge expression,the reasoning ability of Bayesian network,are combined.Then,the situation assessment model of scouting underwater targets with fixed-wing patrol aircraft is established.Hence,the directed acyclic graph of Bayesian network structure is constructed and the assessment index is determined.Next,the cloud model is used to deal with Bayesian network,and the discrete Bayesian network is obtained.Moreover,after CPT of each node and the transformation between certainty degree and probability are accomplished;the final situation level is obtained through a probability synthesis formula.Therefore,the target type and the operational intention of the other side are deduced to form the battlefield situation.Finally,simulations are carried out,and the rationality and validity of the proposed method are testified by simulation results.By this method,the battlefield situation can be gained.And this method has a wider application range,especially for large sample data processing,and it has better practicability.
基金supported by the National Natural Science Foundation of China (6202201562088101)+1 种基金Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)Shanghai Municip al Commission of Science and Technology Project (19511132101)。
文摘Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.
基金supported by the Aviation Science Foundation of China(20152096019)
文摘A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrument, the problem of air combat situation assessment is equivalent to the situation classification problem of air combat data. The fuzzy C-means clustering algorithm is proposed to cluster the selected air combat sample data and the situation classification of the data is determined by the data correlation analysis in combination with the clustering results and the pilots' description of the air combat process. On the basis of semi-supervised naive Bayes classifier, an improved algorithm is proposed based on data classification confidence, through which the situation classification of air combat data is carried out. The simulation results show that the improved algorithm can assess the air combat situation effectively and the improvement of the algorithm can promote the classification performance without significantly affecting the efficiency of the classifier.
基金Supported by Specialized Research Fund for theDoctoral Programof Higher Education of China(20050217007)
文摘Survivability has emerged as a new phase for the development of network security technique, and quantifying survivability for network system helps to evaluate it exactly for the system in different environments. In this paper, we adopt a stochastic method called sequential Monte Carlo and try to reflect dynamic evolvement process of network survivability situation from several time sequences. The experiment results show that this method has the features of quantitative description, real-time calculation and dynamic tracking, and it is a good situation assessment solution for network survivability.
基金supported by the National Natural Science Foundation of China(61305133)the Aeronautical Science Foundation of China grant number 2020Z023053002.
文摘The status of an operator’s situation awareness is one of the critical factors that influence the quality of the missions.Thus the measurement method of the situation awareness status is an important topic to research.So far,there are lots of methods designed for the measurement of situation awareness status,but there is no model that can measure it accurately in real-time,so this work is conducted to deal with such a gap.Firstly,collect the relevant physiological data of operators while they are performing a specific mission,simultaneously,measure their status of situation awareness by using the situation awareness global assessment technique(SAGAT),which is known for accuracy but cannot be used in real-time.And then,after the preprocessing of the raw data,use the physiological data as features,the SAGAT’s results as a label to train a fuzzy cognitive map(FCM),which is an explainable and powerful intelligent model.Also,a hybrid learning algorithm of particle swarm optimization(PSO)and gradient descent is proposed for the FCM training.The final results show that the learned FCM can assess the status of situation awareness accurately in real-time,and the proposed hybrid learning algorithm has better efficiency and accuracy.
基金Supported by National Natural Science Foundation of China(4127-6199)
文摘Based on the monitoring results of environmental quality in Yueqing Bay during 2007-2014,the current situation of environmental quality in the bay was analyzed and assessed. The results show that pH,DO,CODMn,petroleum,and heavy metals( Cu,Pb,Zn,Cd,Hg,As and Cr)in the seawater of Yueqing Bay did not exceed the second class standard of Seawater Quality Standard( GB 3097-1997),but inorganic nitrogen and reactive phosphate in the seawater of Yueqing Bay exceeded the second class standard seriously,and the water quality of the bay was in an eutrophic state; the standard index of evaluation factors of sediment quality was smaller than 1,meeting the demands of sediment quality for environmental protection.
文摘The situation in Southeast Asia in 2017 was generally stable,as relations with China continued to improve,and progress in maritime consultations continued to develop.I.The political situation is stable and generally manageable Stability is manifested in the following aspects.The governments of the Philippines,Myanmar,Vietnam,Laos are seeking stability and good governance.