期刊文献+
共找到5,882篇文章
< 1 2 250 >
每页显示 20 50 100
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
1
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer bayesian networks
下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
2
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
下载PDF
Bayesian network-based survival prediction model for patients having undergone post-transjugular intrahepatic portosystemic shunt for portal hypertension
3
作者 Rong Chen Ling Luo +3 位作者 Yun-Zhi Zhang Zhen Liu An-Lin Liu Yi-Wen Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第13期1859-1870,共12页
BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managi... BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT. 展开更多
关键词 bayesian network CIRRHOSIS Portal hypertension Transjugular intrahepatic portosystemic shunt Survival prediction model
下载PDF
Application of Bayesian Analysis Based on Neural Network and Deep Learning in Data Visualization
4
作者 Jiying Yang Qi Long +1 位作者 Xiaoyun Zhu Yuan Yang 《Journal of Electronic Research and Application》 2024年第4期88-93,共6页
This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,tradit... This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science. 展开更多
关键词 Neural network Deep learning bayesian analysis Data visualization Big data environment
下载PDF
Analysis of rockburst mechanism and warning based on microseismic moment tensors and dynamic Bayesian networks 被引量:4
5
作者 Haoyu Mao Nuwen Xu +4 位作者 Xiang Li Biao Li Peiwei Xiao Yonghong Li Peng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2521-2538,共18页
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev... One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects. 展开更多
关键词 Microseismic monitoring Moment tensor Dynamic bayesian network(DBN) Rockburst warning Shuangjiangkou hydropower station
下载PDF
A reconfigurable dynamic Bayesian network for digital twin modeling of structures with multiple damage modes 被引量:1
6
作者 Yumei Ye Qiang Yang +3 位作者 Jingang Zhang Songhe Meng Jun Wang Xia Tang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第4期251-260,共10页
Dynamic Bayesian networks(DBNs)are commonly employed for structural digital twin modeling.At present,most researches only consider single damage mode tracking.It is not sufficient for a reusable spacecraft as various ... Dynamic Bayesian networks(DBNs)are commonly employed for structural digital twin modeling.At present,most researches only consider single damage mode tracking.It is not sufficient for a reusable spacecraft as various damage modes may occur during its service life.A reconfigurable DBN method is proposed in this paper.The structure of the DBN can be updated dynamically to describe the interactions between different damages.Two common damages(fatigue and bolt loosening)for a spacecraft structure are considered in a numerical example.The results show that the reconfigurable DBN can accurately predict the acceleration phenomenon of crack growth caused by bolt loosening while the DBN with time-invariant structure cannot,even with enough updates.The definition of interaction coefficients makes the reconfigurable DBN easy to track multiple damages and be extended to more complex problems.The method also has a good physical interpretability as the reconfiguration of DBN corresponds to a specific mechanism.Satisfactory predictions do not require precise knowledge of reconfiguration conditions,making the method more practical. 展开更多
关键词 Dynamic bayesian network Reusable spacecraft DAMAGE RECONFIGURATION
下载PDF
Reliability analysis for wireless communication networks via dynamic Bayesian network
7
作者 YANG Shunqi ZENG Ying +2 位作者 LI Xiang LI Yanfeng HUANG Hongzhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1368-1374,共7页
The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works ... The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network. 展开更多
关键词 dynamic bayesian network(DBN) wireless commu-nication network continuous time bayesian network(CTBN) network reliability
下载PDF
Differences between journal and conference in computer science:a bibliometric view based on Bayesian network
8
作者 Mingyue Sun Mingliang Yue Tingcan Ma 《Journal of Data and Information Science》 CSCD 2023年第3期47-60,共14页
Purpose:This paper aims to investigate the differences between conference papers and journal papers in the field of computer science based on Bayesian network.Design/methodology/approach:This paper investigated the di... Purpose:This paper aims to investigate the differences between conference papers and journal papers in the field of computer science based on Bayesian network.Design/methodology/approach:This paper investigated the differences between conference papers and journal papers in the field of computer science based on Bayesian network,a knowledge-representative framework that can model relationships among all variables in the network.We defined the variables required for Bayesian networks modeling,calculated the values of each variable based Aminer dataset(a literature data set in the field of computer science),learned the Bayesian network and derived some findings based on network inference.Findings:The study found that conferences are more attractive to senior scholars,the academic impact of conference papers is slightly higher than journal papers,and it is uncertain whether conference papers are more innovative than journal papers.Research limitations:The study was limited to the field of computer science and employed Aminer dataset as the sample.Further studies involving more diverse datasets and different fields could provide a more complete picture of the matter.Practical implications:By demonstrating that Bayesian networks can effectively analyze issues in Scientometrics,the study offers valuable insights that may enhance researchers’understanding of the differences between journal and conference in computer science.Originality/value:Academic conferences play a crucial role in facilitating scholarly exchange and knowledge dissemination within the field of computer science.Several studies have been conducted to examine the distinctions between conference papers and journal papers in terms of various factors,such as authors,citations,h-index and others.Those studies were carried out from different(independent)perspectives,lacking a systematic examination of the connections and interactions between multiple perspectives.This paper supplements this deficiency based on Bayesian network modeling. 展开更多
关键词 Conference papers Journal papers Computer science BIBLIOMETRICS bayesian network
下载PDF
Bottom hole pressure prediction based on hybrid neural networks and Bayesian optimization
9
作者 Chengkai Zhang Rui Zhang +4 位作者 Zhaopeng Zhu Xianzhi Song Yinao Su Gensheng Li Liang Han 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3712-3722,共11页
Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal co... Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal correlations of measurement while drilling (MWD) data with traditional intelligent models. In this work, we develop a novel hybrid neural network, which integrates the Convolution Neural Network (CNN) and the Gate Recurrent Unit (GRU) for predicting BHP fluctuations more accurately. The CNN structure is used to analyze spatial local dependency patterns and the GRU structure is used to discover depth variation trends of MWD data. To further improve the prediction accuracy, we explore two types of GRU-based structure: skip-GRU and attention-GRU, which can capture more long-term potential periodic correlation in drilling data. Then, the different model structures tuned by the Bayesian optimization (BO) algorithm are compared and analyzed. Results indicate that the hybrid models can extract spatial-temporal information of data effectively and predict more accurately than random forests, extreme gradient boosting, back propagation neural network, CNN and GRU. The CNN-attention-GRU model with BO algorithm shows great superiority in prediction accuracy and robustness due to the hybrid network structure and attention mechanism, having the lowest mean absolute percentage error of 0.025%. This study provides a reference for solving the problem of extracting spatial and temporal characteristics and guidance for managed pressure drilling in complex formations. 展开更多
关键词 Bottom hole pressure Spatial-temporal information Improved GRU Hybrid neural networks bayesian optimization
下载PDF
Uncertainty quantification of predicting stable structures for high-entropy alloys using Bayesian neural networks
10
作者 Yonghui Zhou Bo Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期118-124,I0005,共8页
High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated wi... High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated with density functional theory to search the configuration space of the CoNiRhRu HEA system.The BNN model was developed by considering six independent features of Co-Ni,Co-Rh,CoRu,Ni-Rh,Ni-Ru,and Rh-Ru in different shells and energies of structures as the labels.The root mean squared error of the energy predicted by BNN is 1.37 me V/atom.Moreover,the influence of feature periodicity on the energy of HEA in theoretical calculations is discussed.We found that when the neural network is optimized to a certain extent,only using the accuracy indicator of root mean square error to evaluate model performance is no longer accurate in some scenarios.More importantly,we reveal the importance of uncertainty quantification for neural networks to predict new structures of HEAs with proper confidence based on BNN. 展开更多
关键词 Uncertainty quantification High-entropy alloys bayesian neural networks Energy prediction Structure screening
下载PDF
BN-GEPSO:Learning Bayesian Network Structure Using Generalized Particle Swarm Optimization
11
作者 Muhammad Saad Salman Ibrahim M.Almanjahie +1 位作者 AmanUllah Yasin Ammara Nawaz Cheema 《Computers, Materials & Continua》 SCIE EI 2023年第5期4217-4229,共13页
At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer fr... At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer from the problem that when the nodes and edges increase,the structure learning difficulty increases and algorithms become inefficient.To solve this problem,heuristic optimization algorithms are used,which tend to find a near-optimal answer rather than an exact one,with particle swarm optimization(PSO)being one of them.PSO is a swarm intelligence-based algorithm having basic inspiration from flocks of birds(how they search for food).PSO is employed widely because it is easier to code,converges quickly,and can be parallelized easily.We use a recently proposed version of PSO called generalized particle swarm optimization(GEPSO)to learn bayesian network structure.We construct an initial directed acyclic graph(DAG)by using the max-min parent’s children(MMPC)algorithm and cross relative average entropy.ThisDAGis used to create a population for theGEPSO optimization procedure.Moreover,we propose a velocity update procedure to increase the efficiency of the algorithmic search process.Results of the experiments show that as the complexity of the dataset increases,our algorithm Bayesian network generalized particle swarm optimization(BN-GEPSO)outperforms the PSO algorithm in terms of the Bayesian information criterion(BIC)score. 展开更多
关键词 bayesian network structure learning particle swarm optimization
下载PDF
Type 2 Diabetes Risk Prediction Using Deep Convolutional Neural Network Based-Bayesian Optimization
12
作者 Alawi Alqushaibi Mohd Hilmi Hasan +5 位作者 Said Jadid Abdulkadir Amgad Muneer Mohammed Gamal Qasem Al-Tashi Shakirah Mohd Taib Hitham Alhussian 《Computers, Materials & Continua》 SCIE EI 2023年第5期3223-3238,共16页
Diabetes mellitus is a long-term condition characterized by hyperglycemia.It could lead to plenty of difficulties.According to rising morbidity in recent years,the world’s diabetic patients will exceed 642 million by... Diabetes mellitus is a long-term condition characterized by hyperglycemia.It could lead to plenty of difficulties.According to rising morbidity in recent years,the world’s diabetic patients will exceed 642 million by 2040,implying that one out of every ten persons will be diabetic.There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’lives.Due to its rapid development,deep learning(DL)was used to predict numerous diseases.However,DLmethods still suffer from their limited prediction performance due to the hyperparameters selection and parameters optimization.Therefore,the selection of hyper-parameters is critical in improving classification performance.This study presents Convolutional Neural Network(CNN)that has achieved remarkable results in many medical domains where the Bayesian optimization algorithm(BOA)has been employed for hyperparameters selection and parameters optimization.Two issues have been investigated and solved during the experiment to enhance the results.The first is the dataset class imbalance,which is solved using Synthetic Minority Oversampling Technique(SMOTE)technique.The second issue is the model’s poor performance,which has been solved using the Bayesian optimization algorithm.The findings indicate that the Bayesian based-CNN model superbases all the state-of-the-art models in the literature with an accuracy of 89.36%,F1-score of 0.88.6,andMatthews Correlation Coefficient(MCC)of 0.88.6. 展开更多
关键词 Type 2 diabetes diabetes mellitus convolutional neural network bayesian optimization SMOTE
下载PDF
Study of Deuteron Separation Energy Based on Bayesian Neural Network Approach
13
作者 XING Kang LIANG Yan SUN Xiaojun 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期721-728,共8页
Deuteron separation energy is not only the basis for validating the nuclear mass models and nucleon-nucleon interaction potential,but also can determine the stability of a nuclide to certain extent.Bayesian neural net... Deuteron separation energy is not only the basis for validating the nuclear mass models and nucleon-nucleon interaction potential,but also can determine the stability of a nuclide to certain extent.Bayesian neural network(BNN)approach,which has strong predictive power and can naturally give theoretical errors of predicted values,had been successfully applied to study the different kinds of separations except the deuteron separation.In this paper,several typical nuclear mass models,such as macroscopic model BW2,macroscopic-microscopic model WS4,and microscopic model HFB-31,are chosen to study the deuteron separation energy combining BNN approach.The root-mean-square deviations of these models are partly reduced.In addition,the inclusion of physical parameters related to the pair and shell effects in the input layer can further improve the theoretical accuracy for the deuteron separation energy.The results show that the theoretical predictions are more reliable as more physical features of BNN approach are included. 展开更多
关键词 bayesian neural network deuteron separation energy pair and shell effects
下载PDF
An evaluation method of contribution rate based on fuzzy Bayesian networks for equipment system-of-systems architecture
14
作者 XU Renjie LIU Xin +2 位作者 CUI Donghao XIE Jian GONG Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期574-587,共14页
The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate ev... The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network. 展开更多
关键词 equipment system-of-systems architecture(ESoSA) contribution rate evaluation fuzzy bayesian network(FBN) fuzzy set theory
下载PDF
A cloud Bayesian network approach to situation assessment of scouting underwater targets with fixed-wing patrol aircraft
15
作者 Yongqin Sun Peibei Ma +1 位作者 Jinjin Dai Dongxin Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期532-545,共14页
The battlefield situation changes rapidly because underwater targets'are concealment and the sea environment is uncertain.So,a great number of situation information greatly increase,which need to be dealt with in ... The battlefield situation changes rapidly because underwater targets'are concealment and the sea environment is uncertain.So,a great number of situation information greatly increase,which need to be dealt with in the course of scouting underwater targets.Situation assessment in sea battlefield with a lot of uncertain information is studied,and a new situation assessment method of scouting underwater targets with fixed-wing patrol aircraft is proposed based on the cloud Bayesian network,which overcomes the deficiency of the single cloud model in reasoning ability and the defect of Bayesian network in knowledge representation.Moreover,in the method,the cloud model knowledge deal with the input data of Bayesian network reasoning,and the advantages in knowledge representation of cloud theory and reasoning of Bayesian network are applied;also,the fuzziness and stochasticity of cloud theory in knowledge expression,the reasoning ability of Bayesian network,are combined.Then,the situation assessment model of scouting underwater targets with fixed-wing patrol aircraft is established.Hence,the directed acyclic graph of Bayesian network structure is constructed and the assessment index is determined.Next,the cloud model is used to deal with Bayesian network,and the discrete Bayesian network is obtained.Moreover,after CPT of each node and the transformation between certainty degree and probability are accomplished;the final situation level is obtained through a probability synthesis formula.Therefore,the target type and the operational intention of the other side are deduced to form the battlefield situation.Finally,simulations are carried out,and the rationality and validity of the proposed method are testified by simulation results.By this method,the battlefield situation can be gained.And this method has a wider application range,especially for large sample data processing,and it has better practicability. 展开更多
关键词 certainty degree cloudy bayesian network(CBN) conditional probability table(CPT) fixed-wing patrol aircraft scouting underwater targets situation assessment
下载PDF
Methodological survey of using Bayesian Network for predicting pharmacology-based bioactivities of Chinese medicines:a scoping review
16
作者 Zi-Xin Han Chun-Yu Wang +3 位作者 Jia-Yin Wei Can-Jie Huang Wei-Heng Zhang Bin Luo 《TMR Pharmacology Research》 2023年第4期46-56,共11页
Background:It seems to be numerous unclear black-box mechanisms of Chinese Medicines(CMs)with multiple bioactivities in the real-world clinical practice.Meanwhile,prior prediction is necessary before the implementatio... Background:It seems to be numerous unclear black-box mechanisms of Chinese Medicines(CMs)with multiple bioactivities in the real-world clinical practice.Meanwhile,prior prediction is necessary before the implementation of pharmacodynamics-pharmacokinetics-based researches.With emergent ML techniques for TCM domain,Bayesian Network(BN)has shown its potentials for CM-bioactivity prediction and syndromes identification in Traditional Chinese Medicine(TCM),benefited from many advantages,such as flexibility in addressing,data-driven and probability-based inference under complex uncertainty.Although BN has been extensively used in TCM,the scarcity of researches on refining methodological features of BN-modelling for optimization poses a significant challenge.Our goal is to present methodological overview of BN-modelling for CM-bioactivities prediction towards pharmacology,which tends to acquire a sequence of intimations for boosting in-depth and optimized CM-BN collaboration based on detected gaps.Methods:We performed systematic search of 13 databases from their inception to November 10th 2022 regardless of language written,which excluded unindexed journals and clinical trial registries,using the 3 keywords(CM,Pharmacology,BN).And full-text original researches with the given subject were under consideration.Afterwards,selection of eligible studies,data refinement and inspection were totally conducted by 6 review authors.Results:A total of 7 studies involving 17 BN models were included for synthesis and refinement,based on existing literatures and databases with 2 modelling functions:regression and tagging.There were 3 prediction patterns:property-bioactivity,efficacy-bioactivity and constituent-bioactivity inference,covering 8 feature-utilized efficacies,5 feature-utilized properties and 10 feature-utilized constituents.Thereafter,without an independent validation dataset,established BNs were mostly utilized to predict the root-node probabilities of unknown data.Indeed,incomplete report on modelling samples,directed acyclic graphs,conditional probability tables and algorithms hindered us from gathering information.Conclusion:A spot of studies were found in this work.And current evidence suggested that some breakthroughs should be achieved in CM-BN integration in the future.At last,to our knowledge,we preliminarily proposed certain recommendations and elicited implications for future work. 展开更多
关键词 Chinese medicines bayesian network bioactivity PREDICTION PHARMACOLOGY
下载PDF
Distributed process monitoring based on Kantorovich distancemultiblock variational autoencoder and Bayesian inference
17
作者 Zongyu Yao Qingchao Jiang Xingsheng Gu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期311-323,共13页
Modern industrial processes are typically characterized by large-scale and intricate internal relationships.Therefore,the distributed modeling process monitoring method is effective.A novel distributed monitoring sche... Modern industrial processes are typically characterized by large-scale and intricate internal relationships.Therefore,the distributed modeling process monitoring method is effective.A novel distributed monitoring scheme utilizing the Kantorovich distance-multiblock variational autoencoder(KD-MBVAE)is introduced.Firstly,given the high consistency of relevant variables within each sub-block during the change process,the variables exhibiting analogous statistical features are grouped into identical segments according to the optimal quality transfer theory.Subsequently,the variational autoencoder(VAE)model was separately established,and corresponding T^(2)statistics were calculated.To improve fault sensitivity further,a novel statistic,derived from Kantorovich distance,is introduced by analyzing model residuals from the perspective of probability distribution.The thresholds of both statistics were determined by kernel density estimation.Finally,monitoring results for both types of statistics within all blocks are amalgamated using Bayesian inference.Additionally,a novel approach for fault diagnosis is introduced.The feasibility and efficiency of the introduced scheme are verified through two cases. 展开更多
关键词 Chemical processes SAFETY Kantorovich distance Neural networks Process monitoring bayesian inference
下载PDF
产生“Tuned”模板的Bayesian Networks方法 被引量:8
18
作者 郑肇葆 潘励 虞欣 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2006年第4期304-307,共4页
介绍了Bayesian Networks(简称BNs)产生“Tuned”模板新方法的基本原理以及BNs法与蚁群行为仿真技术和单纯形法组合的方法。通过实际航空影像的实验结果表明,新方法对纹理影像的识别率是令人满意的,同时还将新方法与遗传算法的结果作了... 介绍了Bayesian Networks(简称BNs)产生“Tuned”模板新方法的基本原理以及BNs法与蚁群行为仿真技术和单纯形法组合的方法。通过实际航空影像的实验结果表明,新方法对纹理影像的识别率是令人满意的,同时还将新方法与遗传算法的结果作了对比,结果表明新方法是很有应用前景的。 展开更多
关键词 bayesian networkS Tuned模板 影像纹理分类 单纯形法
下载PDF
多级Bayesian Network的影像纹理分类方法
19
作者 虞欣 郑肇葆 +1 位作者 叶志伟 李林宜 《遥感学报》 EI CSCD 北大核心 2008年第3期442-447,共6页
在影像分类的实际应用中,所提取的特征(或波段)间往往存在较大的相关性。为了把Naive Bayes Clas- sifiers(NBC)模型更好地应用于分类中,本文在研究NBC模型的基础上,从特征空间划分的角度,将它进一步推广为多级Bayesian Network。实验... 在影像分类的实际应用中,所提取的特征(或波段)间往往存在较大的相关性。为了把Naive Bayes Clas- sifiers(NBC)模型更好地应用于分类中,本文在研究NBC模型的基础上,从特征空间划分的角度,将它进一步推广为多级Bayesian Network。实验结果分析表明:由于多级Bayesian Network模型综合考虑了特征之间的条件依赖关系,它在分类精度方面一般高于原始的NBC和最大似然法。然而,对于不同的n值,其分类结果也有所不同。 展开更多
关键词 bayesian network 纹理分类 航空影像 最大似然法
下载PDF
Wireless ad hoc video transmission:a Bayesian network-based scheme
20
作者 蒋荣欣 田翔 +1 位作者 谢立 陈耀武 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期407-413,共7页
A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality ar... A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality are formulized and deduced. The relevant factors are obtained by a cross-layer mechanism or Feedback method. According to these relevant factors, the variable set and the Bayesian network topology are determined. Then a Bayesian network prediction model is constructed. The results of the prediction can be used as the bandwidth of the mobile ad hoc network (MANET). According to the bandwidth, the video encoder is controlled to dynamically adjust and encode the right bit rates of a real-time video stream. Integrated simulation of a video streaming communication system is implemented to validate the proposed solution. In contrast to the conventional transfer scheme, the results of the experiment indicate that the proposed scheme can make the best use of the network bandwidth; there are considerable improvements in the packet loss and the visual quality of real-time video.K 展开更多
关键词 mobile ad hoc network (MANET) bayesian network CROSS-LAYER IEEE 802. 11 real-time video streaming
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部