Walking on inclined terrains or slopes is challenging for multi-legged robots. Robots should be able to handle more strict constraints imposed by the physical system than they do on flat terrains, such as smaller leg ...Walking on inclined terrains or slopes is challenging for multi-legged robots. Robots should be able to handle more strict constraints imposed by the physical system than they do on flat terrains, such as smaller leg workspace and tighter stability margin. At the same time, robots need to autonomously generate constrained and stable motions to accommodate terrain inclination and unevenness. With regard to these issues, this paper provides a solution from two perspectives, mechanism design and planning methodology. The robot mechanism with a 1-DOF waist is firstly proposed to meet the requirements of the leg workspace and the static stability. After that, a step rolling planning scheme is introduced, in which the robot schedules its body planar 2D motion according to the human guidance and plans its elevation, roll, pitch as well as leg motions autonomously incorporating sensory feedbacks. The step rolling planning scheme ensures smooth and safe motion transitions from step to step.At last, simulations and experiments are carried out, demonstrating the effectiveness of our mechanical design and the proposed planning method.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U1613208)the Shanghai Science and Technology Innovation Action Plan(Grant No.16DZ1201001)
文摘Walking on inclined terrains or slopes is challenging for multi-legged robots. Robots should be able to handle more strict constraints imposed by the physical system than they do on flat terrains, such as smaller leg workspace and tighter stability margin. At the same time, robots need to autonomously generate constrained and stable motions to accommodate terrain inclination and unevenness. With regard to these issues, this paper provides a solution from two perspectives, mechanism design and planning methodology. The robot mechanism with a 1-DOF waist is firstly proposed to meet the requirements of the leg workspace and the static stability. After that, a step rolling planning scheme is introduced, in which the robot schedules its body planar 2D motion according to the human guidance and plans its elevation, roll, pitch as well as leg motions autonomously incorporating sensory feedbacks. The step rolling planning scheme ensures smooth and safe motion transitions from step to step.At last, simulations and experiments are carried out, demonstrating the effectiveness of our mechanical design and the proposed planning method.