The size-controlled silica microspheres were prepared by a facile method and the growth mechanism was simply studied. The as-prepared samples were characterized by scanning electron microscopy and transmission elec- t...The size-controlled silica microspheres were prepared by a facile method and the growth mechanism was simply studied. The as-prepared samples were characterized by scanning electron microscopy and transmission elec- tron microscopy. The CO2 adsorption behaviors and methane catalytic oxidation were also measured. The results show that the as-prepared silica is perfect sphere, and the particle size can be controlled by adding tartaric acid. Spherical silica and sphere/tube(rod)-shaped silica were obtained by adjusting reaction time. Silica microspheres with uniform size exhibit high capacity of CO2 adsorption, while others with wide size-distribution exhibit excellent catalytic performance, suggesting it is an effective method by regulating size to utilize its advantages selectively. Therefore, it will be an ideal strategy to develop the efficient multifunctional materials by a facile route.展开更多
The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C...The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance.展开更多
Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, ...Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, respectively. It was found that no obvious oxidation of the synthesized nanoparticles was traced by X-ray diffraction. In addition, the results show that the density of primary particles decreases with decreasing the addition rate of the reducing agent. Moreover, the slight particle agglomeration and slow secondary particle growth can result in small-sized nanoparticles. Meanwhile, the effect of surfactant concentration on the particle size can effectively be controlled when the reducing agent is added into the precursor at an appropriate rate. In summary, the capping effect caused by the surfactant molecules coordinating with the nanoclusters will restrict the growth of the nanoparticles. The larger the mass ratio of the surfactant to the precursor is, the smaller the particle size is.展开更多
To investigate the possibility of substituting the mechanical stirring system with electromagnetic stirring (EMS) system for aluminum rheo die-casting, the EMS under the different stirring cooling conditions was carri...To investigate the possibility of substituting the mechanical stirring system with electromagnetic stirring (EMS) system for aluminum rheo die-casting, the EMS under the different stirring cooling conditions was carried out. It was found that in the early period of solidification, the dendrite breakages led to a fine primary phase. When dendrites grew coarsely, the effect of ripening on grain size overwhelmed that of dendrite breakage. It was also found that the high cooling rate favored large nucleation rate, and led to a fine primary phase. But high cooling rate also made the growth rate of the dendrite arm, which prevented the dendrite arm from being sheared off. Therefore there were a suitable stirring time and suitable cooling rate to obtain the best rheo die-casting structure. Qualified semisolid A356 aluminum alloy was successfully manufactured with short time EMS.展开更多
A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biom...A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biomedicine.The main concerns focus on the moderation of the approach,yield,and product quality.Herein,a modified approach,organic solvent-assisted intercalation and collection,was developed to prepare Ti_(3)C_(2)T_(x) flakes.The new approach simultaneously solves all the concerns,featuring a low requirement for facility(centrifugation speed<4000 rpm in whole process),gram-level preparation with remarkable yield(46.3%),a good electrical conductivity(8672 S cm^(−1)),an outstanding capacitive performance(352 F g^(−1)),and easy control over the dimension of Ti_(3)C_(2)T_(x) flakes(0.47–4.60μm^(2)).This approach not only gives a superb example for the synthesis of other MXene materials in laboratory,but sheds new light for the future mass production of Ti_(3)C_(2)T_(x) MXene.展开更多
Nickel nanoparticles (〈10 nm) were success fully synthesized using a reductive method of nickel chloride with sodium borohydride in the ethanol/poly vinylpyrrolidone (PVP) system. The effects of three fac tors, s...Nickel nanoparticles (〈10 nm) were success fully synthesized using a reductive method of nickel chloride with sodium borohydride in the ethanol/poly vinylpyrrolidone (PVP) system. The effects of three fac tors, such as the concentration of the nickel ions, the time of reaction, and the amount of PVP (surfactant), were discussed. The possible growth process of the particles and optimum reactive conditions was also investigated. The result of transmission electron microscopy (TEM) reveals that these nickel nanoparticles are spherical. The average diameter could be controlled as 25 nm under selected conditions. Highresolution TEM and energydispersive spectroscopy results indicates that the nickel nanoparticles are pure. The UVvisible light absorption spectrum shows that the peaks of nickel nanoparticles moves toward the short wavelength along with the decrease of sizes.展开更多
Calcium carbonate, the main component of lime, has been widely used in industry due to its stability and economy. Calcium carbonate has three types of crystalline polymorphism, calcite, aragonite and vaterite, each wi...Calcium carbonate, the main component of lime, has been widely used in industry due to its stability and economy. Calcium carbonate has three types of crystalline polymorphism, calcite, aragonite and vaterite, each with different properties. Therefore, the control of crystal polymorphism is required for industrial applications. In addition, the control of crystal size and shape is similarly required for different applications. In this study, the effect of SrCO<sub>3</sub> on the size control of fine aragonite-type calcium carbonate crystals by uniform urea precipitation and the effect of SrCO<sub>3</sub> addition was investigated by adding solid strontium carbonate and dissolved strontium carbonate. The addition of solid strontium carbonate affected the crystal polymorphism and size of the calcium carbonate produced, depending on the properties of the solid particles and the amount of SrCO<sub>3</sub> added. Experiments on the addition of dissolved SrCO<sub>3</sub> showed that the supersaturation formation rate could be controlled to control the crystal polymorphism.展开更多
A 3-dimensional(3D)micromagnetic model combined with Fast Fourier Transform(FFT)method was built up to study the writability in the L1_(0)FePt perpendicular medium.The effects of controllable grain size distributions ...A 3-dimensional(3D)micromagnetic model combined with Fast Fourier Transform(FFT)method was built up to study the writability in the L1_(0)FePt perpendicular medium.The effects of controllable grain size distributions were studied by grain growth simulation.It is found that the cross-track-averaged magnetization changes little between the L1_(0)FePt medium with uniform or non-uniform grain size distribution.展开更多
With photographing and experiments, this paper divides the cocoon layers into three categories according to their colors, establishes three-color membership function based on fuzzy mathematics, constructs fuzzy sets w...With photographing and experiments, this paper divides the cocoon layers into three categories according to their colors, establishes three-color membership function based on fuzzy mathematics, constructs fuzzy sets which satisfy the range of size control by using the ordinary set and attached frequency of threecolor cocoons combination, then achieves the ordinary sets of range of size control by choosing λ-cut. Under these ordinary sets, each end does duality relative level, then sets up relative matrix and overall sequence and finds the membership function to judge whether the size control is mormal.展开更多
We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusi...We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications.展开更多
Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesi...Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.展开更多
Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction...Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction with the reaction kinetics processes regulated to rapidly synthesize Au-Ag hollow alloy nanoparticles with tunable cavity sizes.The position of the localized surface plasmon resonance(LSPR)peak could be effectively adjusted between 490 nm and 713 nm by decreasing the cavity size of the Au-Ag hollow nanoparticles from 35 nm to 20 nm.The plasmon-enhanced photocatalytic H2 evolution of alloy nanoparticles with different cavity sizes was investigated.Compared with pure P25(TiO2),intact and thin-shelled Au-Ag hollow nanoparticles(HNPs)-supported photocatalyst exhibited an increase in the photocatalytic H2 evolution rate from 0.48μmol h^−1 to 4μmol h^−1 under full-spectrum irradiation.This improved photocatalytic performance was likely due to the plasmon-induced electromagnetic field effect,which caused strong photogenerated charge separation,rather than the generation of hot electrons.展开更多
The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill...The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill mining workface should also be considered. In this study, we established a main roof strata model with loads in accordance with the theory of key strata to investigate the stability of the overburden in solid dense filling mining. We analyzed the stress distribution law of the main roof strata based on elastic thin plate theory. The results show that the position of the long side midpoint of the main roof strata failed more easily because of tensile yield, indicating that this position is the area where failure is likely to occur more easily. We also deduced the stability mechanics criterion of the main roof strata based on tensile yield criterion. The factors affecting the stability of the overburden in solid dense filling mining were also analyzed, including the thickness and elasticity modulus of the main roof strata, overlying strata loads, advanced distance and length of workface, and elastic foundation coefficient of backfill body. The research achievements can provide an important theoretical basis for determining the designed size of the solid dense filling mining workface.展开更多
Block copolymer polystyrene-b-poly(acrylic acid)(PS-b-PAA) was used as structural template for the synthesis of CaCO3 microparticles. Through this procedure, acid resistant hybrid CaCO3 micro- spheres were obtaine...Block copolymer polystyrene-b-poly(acrylic acid)(PS-b-PAA) was used as structural template for the synthesis of CaCO3 microparticles. Through this procedure, acid resistant hybrid CaCO3 micro- spheres were obtained. Acid resistant properties of this type of hybrid CaCO3 were studied. Size measurement shows that the acid resistant properties of the hybrid particles are different in different solutions, such as HCl, EDTA, and H2SO4 solutions.展开更多
Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficienc...Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system.展开更多
This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal contr...This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal control agent to study the influence of crystalline of ultrafine calcium carbonate. The experimental results show that the different concentrations of CMC as crystal control agent on the morphology and crystal structure of calcium carbonate have obvious effect, which emerge morphology change from square to spherical, crystalline transition from calcite to aragonite. Thus, the results provide experimental data and theoretical basis for the use of different additives, and provide experimental basis and feasible solution for this kind of reaction.展开更多
Quasi-two dimensional(2D)perovskites have emerged as a promising class of materials due to their remarkable photoluminescence efficiency,which stems from their exceptionally high exciton binding energies.The spatial c...Quasi-two dimensional(2D)perovskites have emerged as a promising class of materials due to their remarkable photoluminescence efficiency,which stems from their exceptionally high exciton binding energies.The spatial confinement of excitons within smaller grain sizes could enhance the formation of biexcitons leading to higher radiative recombination efficiency.However,the synthesis of high-quality quasi-2D perovskite thin films with controllable grain sizes remains a challenging task.In this study,we present a facile method for achieving quasi-2D perovskite thin films with controllable grain sizes ranging from 500 to 900 nm.This is accomplished by intermediate phase engineering during the film fabrication process.Our results demonstrate that quasi-2D perovskite films with smaller grain sizes exhibit more efficient bound exciton generation and a reduced stimulated emission threshold down to 15.89µJ cm^(−2).Furthermore,femtosecond transient absorption measurements reveal that the decay time of bound excitons is shorter in quasi-2D perovskites with smaller grain sizes compared to that of those with larger grains at the same pump density,which is 230.5 ps.This observation suggests a more efficient exciton recombination process in the smaller grain size regime.Our findings would offer a promising approach for the development of efficient bound exciton lasers.展开更多
Controlled peptide assembly offers significant promise to develop synthetic supramolecular nanostructures to display material and biological properties that mimic protein assemblies in nature.Despite the progress in f...Controlled peptide assembly offers significant promise to develop synthetic supramolecular nanostructures to display material and biological properties that mimic protein assemblies in nature.Despite the progress in forming peptide nanostructures of various morphology,there exists a distinct gap between natural and synthetic assembly systems in terms of size control.Constructing nanostructures with a narrow size distribution that can be tuned over a wide range of length-scales is essential for applications that require precise spacing between objects.This approach provides the opportunity to correlate materials and biological properties of interest with assembly size.In this review,we discuss representative endeavors over the past two decades for design of size-controllable peptide nanostructures using tunable building blocks.Other mechanisms for size control,e.g.,molecular frustration,template-directed peptide assembly,and multi-component peptide co-assembly,will also be discussed.We also demonstrate the applicable scopes of these strategies and suggest potential future avenues for scientific advances in this field.展开更多
Lithium iron phosphate (LiFePO4) is a potential high efficiency cathode material for lithium ion batteries, but the low electronic conductivity and single diffusion channel for lithium ions require good particle siz...Lithium iron phosphate (LiFePO4) is a potential high efficiency cathode material for lithium ion batteries, but the low electronic conductivity and single diffusion channel for lithium ions require good particle size and shape control during the synthesis of this material. In this paper, six LiFePO4 nanocrystals with different size and shape have been successfully synthesized in ethylene glycol. The addition sequence Fe-PO4-Li helps to form LiFePO4 nanocrystals with mostly {010} faces exposed, and increasing the amount of LiOH leads to a decrease in particle size. The electrochemical performance of the six distinct LiFePO4 particles show that the most promising LiFePO4 nanocrystals either have predominant {010} face exposure or high specific area, with little iron(II) oxidation.展开更多
Metal-halide perovskites are novel optoelectronic materials that are considered good candidates for solar harvesting and light emitting applications. In this study, we develop a reproducible and low-cost approach for ...Metal-halide perovskites are novel optoelectronic materials that are considered good candidates for solar harvesting and light emitting applications. In this study, we develop a reproducible and low-cost approach for synthesizing high- quality cesium lead halide perovskite (CsPbX3, X = CI, Br, and I or C1/Br and I/Br) nanocrystals (NCs) by direct heating of precursors in octadecene in air. Experimental results show that the particle size and composition of as-prepared CsPbX3 nanocrystals can be successfully tuned by a simple variation of reaction temperature. The emission peak positions of the as-prepared nanocrystals can be conveniently tuned from the UV to the NIR (360-700 nm) region, and the quantum yield of the as-obtained samples (green and red emissions) can reach up to 87%. The structures and chemical compositions of the as-obtained NCs were characterized by transmission electron microscopy, X-ray diffraction, and elemental analysis. This proposed synthetic route can yield large amounts of high-quality NCs with a one-batch reaction, usually on the gram scale, and could pave the way for further applications of perovskite-based light-emitting and photovoltaic solar cells.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.21136007, 51572185), the Natural Science Foundation of Shanxi Province, China(No.2014011016-4) and the Coal-Based Key Scientific and Technological Project of Shanxi Province, China(No.MQ2014-10).
文摘The size-controlled silica microspheres were prepared by a facile method and the growth mechanism was simply studied. The as-prepared samples were characterized by scanning electron microscopy and transmission elec- tron microscopy. The CO2 adsorption behaviors and methane catalytic oxidation were also measured. The results show that the as-prepared silica is perfect sphere, and the particle size can be controlled by adding tartaric acid. Spherical silica and sphere/tube(rod)-shaped silica were obtained by adjusting reaction time. Silica microspheres with uniform size exhibit high capacity of CO2 adsorption, while others with wide size-distribution exhibit excellent catalytic performance, suggesting it is an effective method by regulating size to utilize its advantages selectively. Therefore, it will be an ideal strategy to develop the efficient multifunctional materials by a facile route.
基金supported by the National Key Research and Development Program of China(2022YFB3806800)the National Natural Science Foundation of China(22122811,22008209)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SZ-TD008).
文摘The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance.
基金Projects(50971086,51171105)supported by the National Natural Science Foundation of China
文摘Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, respectively. It was found that no obvious oxidation of the synthesized nanoparticles was traced by X-ray diffraction. In addition, the results show that the density of primary particles decreases with decreasing the addition rate of the reducing agent. Moreover, the slight particle agglomeration and slow secondary particle growth can result in small-sized nanoparticles. Meanwhile, the effect of surfactant concentration on the particle size can effectively be controlled when the reducing agent is added into the precursor at an appropriate rate. In summary, the capping effect caused by the surfactant molecules coordinating with the nanoclusters will restrict the growth of the nanoparticles. The larger the mass ratio of the surfactant to the precursor is, the smaller the particle size is.
文摘To investigate the possibility of substituting the mechanical stirring system with electromagnetic stirring (EMS) system for aluminum rheo die-casting, the EMS under the different stirring cooling conditions was carried out. It was found that in the early period of solidification, the dendrite breakages led to a fine primary phase. When dendrites grew coarsely, the effect of ripening on grain size overwhelmed that of dendrite breakage. It was also found that the high cooling rate favored large nucleation rate, and led to a fine primary phase. But high cooling rate also made the growth rate of the dendrite arm, which prevented the dendrite arm from being sheared off. Therefore there were a suitable stirring time and suitable cooling rate to obtain the best rheo die-casting structure. Qualified semisolid A356 aluminum alloy was successfully manufactured with short time EMS.
基金This work was financially supported by National Natural Science Foundation of China(No.51903197)Wuhu and Xidian University special fund for industry-universityresearch cooperation(No.XWYCXY-012020012)+3 种基金Open Fund of Zhijiang Lab(2021MC0AB02)China Postdoctoral Science Foundation(2019TQ02422019M660061XB)the Fundamental Research Funds for the Central Universities(JC2110,JB211305).
文摘A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biomedicine.The main concerns focus on the moderation of the approach,yield,and product quality.Herein,a modified approach,organic solvent-assisted intercalation and collection,was developed to prepare Ti_(3)C_(2)T_(x) flakes.The new approach simultaneously solves all the concerns,featuring a low requirement for facility(centrifugation speed<4000 rpm in whole process),gram-level preparation with remarkable yield(46.3%),a good electrical conductivity(8672 S cm^(−1)),an outstanding capacitive performance(352 F g^(−1)),and easy control over the dimension of Ti_(3)C_(2)T_(x) flakes(0.47–4.60μm^(2)).This approach not only gives a superb example for the synthesis of other MXene materials in laboratory,but sheds new light for the future mass production of Ti_(3)C_(2)T_(x) MXene.
基金supported by the National Natural Science Foundation of China(Nos.51272025 and 50872011)the National Key Basic Research Development Plan(973 Program)(No.2007CB613608)the New Century Excellent Researcher Award Program from Ministry of Education of China(No.NCET-08-0732)
文摘Nickel nanoparticles (〈10 nm) were success fully synthesized using a reductive method of nickel chloride with sodium borohydride in the ethanol/poly vinylpyrrolidone (PVP) system. The effects of three fac tors, such as the concentration of the nickel ions, the time of reaction, and the amount of PVP (surfactant), were discussed. The possible growth process of the particles and optimum reactive conditions was also investigated. The result of transmission electron microscopy (TEM) reveals that these nickel nanoparticles are spherical. The average diameter could be controlled as 25 nm under selected conditions. Highresolution TEM and energydispersive spectroscopy results indicates that the nickel nanoparticles are pure. The UVvisible light absorption spectrum shows that the peaks of nickel nanoparticles moves toward the short wavelength along with the decrease of sizes.
文摘Calcium carbonate, the main component of lime, has been widely used in industry due to its stability and economy. Calcium carbonate has three types of crystalline polymorphism, calcite, aragonite and vaterite, each with different properties. Therefore, the control of crystal polymorphism is required for industrial applications. In addition, the control of crystal size and shape is similarly required for different applications. In this study, the effect of SrCO<sub>3</sub> on the size control of fine aragonite-type calcium carbonate crystals by uniform urea precipitation and the effect of SrCO<sub>3</sub> addition was investigated by adding solid strontium carbonate and dissolved strontium carbonate. The addition of solid strontium carbonate affected the crystal polymorphism and size of the calcium carbonate produced, depending on the properties of the solid particles and the amount of SrCO<sub>3</sub> added. Experiments on the addition of dissolved SrCO<sub>3</sub> showed that the supersaturation formation rate could be controlled to control the crystal polymorphism.
文摘A 3-dimensional(3D)micromagnetic model combined with Fast Fourier Transform(FFT)method was built up to study the writability in the L1_(0)FePt perpendicular medium.The effects of controllable grain size distributions were studied by grain growth simulation.It is found that the cross-track-averaged magnetization changes little between the L1_(0)FePt medium with uniform or non-uniform grain size distribution.
文摘With photographing and experiments, this paper divides the cocoon layers into three categories according to their colors, establishes three-color membership function based on fuzzy mathematics, constructs fuzzy sets which satisfy the range of size control by using the ordinary set and attached frequency of threecolor cocoons combination, then achieves the ordinary sets of range of size control by choosing λ-cut. Under these ordinary sets, each end does duality relative level, then sets up relative matrix and overall sequence and finds the membership function to judge whether the size control is mormal.
基金Open Access funding enabled and organized by Projekt DEAL.
文摘We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications.
基金supported by the National Natural Science Foundation of China (21373272)~~
文摘Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.
基金supported by the National Natural Science Foundation of China(No.61704114)the Key areas of Science and Technology Program of Xinjiang Production and Construction Corps,China(No.2018AB004)the National Science Foundation(CBET-1803256).
文摘Au-Ag alloy nanoparticles with different cavity sizes have great potential for improving photocatalytic performance due to their tunable plasmon effect.In this study,galvanic replacement was combined with co-reduction with the reaction kinetics processes regulated to rapidly synthesize Au-Ag hollow alloy nanoparticles with tunable cavity sizes.The position of the localized surface plasmon resonance(LSPR)peak could be effectively adjusted between 490 nm and 713 nm by decreasing the cavity size of the Au-Ag hollow nanoparticles from 35 nm to 20 nm.The plasmon-enhanced photocatalytic H2 evolution of alloy nanoparticles with different cavity sizes was investigated.Compared with pure P25(TiO2),intact and thin-shelled Au-Ag hollow nanoparticles(HNPs)-supported photocatalyst exhibited an increase in the photocatalytic H2 evolution rate from 0.48μmol h^−1 to 4μmol h^−1 under full-spectrum irradiation.This improved photocatalytic performance was likely due to the plasmon-induced electromagnetic field effect,which caused strong photogenerated charge separation,rather than the generation of hot electrons.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.51404013)the Natural Science Foundation of Anhui Province (Nos.1508085ME77 and 1508085QE89)the Open Projects of State Key Laboratory for Geomechanics & Deep Underground Engineering at the China University of Mining and Technology (No.SKLGDUEK1212)
文摘The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill mining workface should also be considered. In this study, we established a main roof strata model with loads in accordance with the theory of key strata to investigate the stability of the overburden in solid dense filling mining. We analyzed the stress distribution law of the main roof strata based on elastic thin plate theory. The results show that the position of the long side midpoint of the main roof strata failed more easily because of tensile yield, indicating that this position is the area where failure is likely to occur more easily. We also deduced the stability mechanics criterion of the main roof strata based on tensile yield criterion. The factors affecting the stability of the overburden in solid dense filling mining were also analyzed, including the thickness and elasticity modulus of the main roof strata, overlying strata loads, advanced distance and length of workface, and elastic foundation coefficient of backfill body. The research achievements can provide an important theoretical basis for determining the designed size of the solid dense filling mining workface.
基金Supported by the National Natural Science Foundation of China(Nos.50803055, 30872902).
文摘Block copolymer polystyrene-b-poly(acrylic acid)(PS-b-PAA) was used as structural template for the synthesis of CaCO3 microparticles. Through this procedure, acid resistant hybrid CaCO3 micro- spheres were obtained. Acid resistant properties of this type of hybrid CaCO3 were studied. Size measurement shows that the acid resistant properties of the hybrid particles are different in different solutions, such as HCl, EDTA, and H2SO4 solutions.
基金the National Natural Science Foundation of China (No. 10632030 and10572119)the Fundamental Research Foundation of NPUthe Scientific and Technological Innovation Foundation for teachers of NPU
文摘Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system.
文摘This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal control agent to study the influence of crystalline of ultrafine calcium carbonate. The experimental results show that the different concentrations of CMC as crystal control agent on the morphology and crystal structure of calcium carbonate have obvious effect, which emerge morphology change from square to spherical, crystalline transition from calcite to aragonite. Thus, the results provide experimental data and theoretical basis for the use of different additives, and provide experimental basis and feasible solution for this kind of reaction.
基金supported by the National Natural Science Foundation of China(U21A20496 and 12104334)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20230011)+5 种基金the Research Program Supported by ShanxiZheda Institute of Advanced Materials and Chemical Engineering(2022SXTD020)the Central Government Guides Local Funds for Scientific and Technological Development(YDZJSX20231A010)the Natural Science Foundation of Shanxi Province(202203021222102)the State Key Laboratory Program of Quantum Optics and Quantum Optics Devices(KF202306)the support from a research grant(VIL50350)from VILLUM FONDEN,Denmark,the Swedish Research Council(2021-05319)the Swedish foundation of international cooperation in research and higher education(CH2019-8248)。
文摘Quasi-two dimensional(2D)perovskites have emerged as a promising class of materials due to their remarkable photoluminescence efficiency,which stems from their exceptionally high exciton binding energies.The spatial confinement of excitons within smaller grain sizes could enhance the formation of biexcitons leading to higher radiative recombination efficiency.However,the synthesis of high-quality quasi-2D perovskite thin films with controllable grain sizes remains a challenging task.In this study,we present a facile method for achieving quasi-2D perovskite thin films with controllable grain sizes ranging from 500 to 900 nm.This is accomplished by intermediate phase engineering during the film fabrication process.Our results demonstrate that quasi-2D perovskite films with smaller grain sizes exhibit more efficient bound exciton generation and a reduced stimulated emission threshold down to 15.89µJ cm^(−2).Furthermore,femtosecond transient absorption measurements reveal that the decay time of bound excitons is shorter in quasi-2D perovskites with smaller grain sizes compared to that of those with larger grains at the same pump density,which is 230.5 ps.This observation suggests a more efficient exciton recombination process in the smaller grain size regime.Our findings would offer a promising approach for the development of efficient bound exciton lasers.
基金supported by the National Natural Science Foundation of China(Nos.22074128 and 22241503)Fundamental Research Funds for the Central Universities(Nos.20720210013 and 20720220005).
文摘Controlled peptide assembly offers significant promise to develop synthetic supramolecular nanostructures to display material and biological properties that mimic protein assemblies in nature.Despite the progress in forming peptide nanostructures of various morphology,there exists a distinct gap between natural and synthetic assembly systems in terms of size control.Constructing nanostructures with a narrow size distribution that can be tuned over a wide range of length-scales is essential for applications that require precise spacing between objects.This approach provides the opportunity to correlate materials and biological properties of interest with assembly size.In this review,we discuss representative endeavors over the past two decades for design of size-controllable peptide nanostructures using tunable building blocks.Other mechanisms for size control,e.g.,molecular frustration,template-directed peptide assembly,and multi-component peptide co-assembly,will also be discussed.We also demonstrate the applicable scopes of these strategies and suggest potential future avenues for scientific advances in this field.
文摘Lithium iron phosphate (LiFePO4) is a potential high efficiency cathode material for lithium ion batteries, but the low electronic conductivity and single diffusion channel for lithium ions require good particle size and shape control during the synthesis of this material. In this paper, six LiFePO4 nanocrystals with different size and shape have been successfully synthesized in ethylene glycol. The addition sequence Fe-PO4-Li helps to form LiFePO4 nanocrystals with mostly {010} faces exposed, and increasing the amount of LiOH leads to a decrease in particle size. The electrochemical performance of the six distinct LiFePO4 particles show that the most promising LiFePO4 nanocrystals either have predominant {010} face exposure or high specific area, with little iron(II) oxidation.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21373097 and 51072067).
文摘Metal-halide perovskites are novel optoelectronic materials that are considered good candidates for solar harvesting and light emitting applications. In this study, we develop a reproducible and low-cost approach for synthesizing high- quality cesium lead halide perovskite (CsPbX3, X = CI, Br, and I or C1/Br and I/Br) nanocrystals (NCs) by direct heating of precursors in octadecene in air. Experimental results show that the particle size and composition of as-prepared CsPbX3 nanocrystals can be successfully tuned by a simple variation of reaction temperature. The emission peak positions of the as-prepared nanocrystals can be conveniently tuned from the UV to the NIR (360-700 nm) region, and the quantum yield of the as-obtained samples (green and red emissions) can reach up to 87%. The structures and chemical compositions of the as-obtained NCs were characterized by transmission electron microscopy, X-ray diffraction, and elemental analysis. This proposed synthetic route can yield large amounts of high-quality NCs with a one-batch reaction, usually on the gram scale, and could pave the way for further applications of perovskite-based light-emitting and photovoltaic solar cells.