Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness , crystalline phase, grain size, surface hydroxyl amount and so on were...Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness , crystalline phase, grain size, surface hydroxyl amount and so on were characterized by scanning electron microscopy (SEM) , X-ray diffraction (XRD), transmission electron microscopy ( TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer ( UV-VIS). The photocatalytic activity of TiO2 thin films was evaluated for the photocatalytic decolorization of aqueous methyl orange . The effects of film thickness on the crystalline phase, grain size, transmittance and photocatalytic activity of nanometer Ti02 thin films were discussed.展开更多
The grain size and surface morphology of sputtered Au films are studied by x-ray diffraction and atomic force microscope. For as-deposited samples the grain growth mechanism is consistent with the two-dimensional (2D...The grain size and surface morphology of sputtered Au films are studied by x-ray diffraction and atomic force microscope. For as-deposited samples the grain growth mechanism is consistent with the two-dimensional (2D) theory, which gives relatively low diffusion coefficient during deposition. Annealing process demonstrates the secondary grain growth mechanism in which the thickness dependence of grain boundary energy plays a key role. The surface roughness increases with the increase of grain size.展开更多
Microcrystalline diamond(MCD)films with different grain sizes ranging from 160 nm to 2200 nm are prepared by using a hot filament chemical vapor deposition(HFCVD)system,and the influences of grain size and structural ...Microcrystalline diamond(MCD)films with different grain sizes ranging from 160 nm to 2200 nm are prepared by using a hot filament chemical vapor deposition(HFCVD)system,and the influences of grain size and structural features on optical properties are investigated.The results show that the film with grain size in a range of 160 nm–310 nm exhibits a higher refractive index in a range of(2.77–2.92).With grain size increasing to 620±300 nm,the refractive index shows a value between 2.39 and 2.47,approaching to that of natural diamond(2.37–2.55),and a lower extinction coefficient value between 0.08 and 0.77.When the grain size increases to 2200 nm,the value of refractive index increases to a value between 2.66 and 2.81,and the extinction coefficient increases to a value in a range of 0.22–1.28.Visible Raman spectroscopy measurements show that all samples have distinct diamond peaks located in a range of 1331 cm-1–1333 cm-1,the content of diamond phase increases gradually as grain size increases,and the amount of trans-polyacetylene(TPA)content decreases.Meanwhile,the sp2 carbon clusters content and its full-width-at-half-maximum(FWHM)value are significantly reduced in MCD film with a grain size of 620 nm,which is beneficial to the improvement of the optical properties of the films.展开更多
Wafer curvature method has been applied to determine the internal stress in the films using Stoney's equation.During the film deposition,the wafer fixation on the sample holder will restrict the deformation of the re...Wafer curvature method has been applied to determine the internal stress in the films using Stoney's equation.During the film deposition,the wafer fixation on the sample holder will restrict the deformation of the rectangle-shaped wafer,which may result in the stress datum difference along length and width direction.In this paper,the effect of wafer size and the wafer fixation on the TiN film internal stress measured by wafer curvature method was discussed.The rectangle-shaped wafers with different length/width ratios(L/W=1:1,2:1,3:1 and 4:1) were fixed as a cantilever beam.After the TiN films deposition,the profiles of the film/wafer were measured using a stylus profilometer and then the internal stress was calculated using the Stoney equation in the film.The results showed that the fixed end of the wafers limited to some degree the curvature of the wafers along the width direction.For film internal stress measured by wafer curvature method,the wafer profile should be scanned along the length direction and the scan distance should be greater than or equal to half of wafer length.When the length/width ratio of the wafer reached 3:1,the wafer curvature and the calculated stress were basically the same at different positions along the length direction.For film internal stress measured by wafer curvature method,it was recommended that the length/width ratio of wafer should be considered to be greater than or equal to 3:1,and the deformed profile was scanned along the length direction.展开更多
The film formation process of micro-PS particles (diameter 742 nm) and nano-PS particles (diameter 29 nm) was studied by atomic force microscopy and differential scanning calorimetry. During a step heating process, th...The film formation process of micro-PS particles (diameter 742 nm) and nano-PS particles (diameter 29 nm) was studied by atomic force microscopy and differential scanning calorimetry. During a step heating process, the particles were annealed for 0.5 h at each selected temperature. It was found that the deformation and interdiffusion temperatures of the micro-PS particles are ca. 120-130degreesC and 140-150degreesC, that of the nano-PS particles are 90degreesC and 100-110degreesC respectively. The DSC traces of nano-PS particles showed that there was an exothermic peak near T-g after annealing for 0.5 h at the selected temperatures below 90degreesC; otherwise, the exothermic peak disappeared after annealing at 100degreesC or above. Compared with the micro-PS particles, the sintering process of nano-PS particles occurs at much lower temperature determined by the confined state of polymer chains with higher conformational energy in nano-particles, and completes in a much narrower temperature range driven mainly by the larger total surface energy.展开更多
The size effects of the critical behaviors for the systems of interacting spins are discussed extensively inliterature.In this paper,the finite-size dependence of the critical temperature and susceptibility of the fer...The size effects of the critical behaviors for the systems of interacting spins are discussed extensively inliterature.In this paper,the finite-size dependence of the critical temperature and susceptibility of the ferroelectric thinfilm are investigated numerically based on the four-state Potts model with the nearest-neighbor interactions between thedipole moments.The four orientations of the domains exist in the ferroelectric film and the movement of the domainwalls determines the polarization switching process besides the boundary conditions of the film.The critical exponentsare obtained and our investigations show that the boundary conditions play the important roles for the ferroelectricproperties of the thin films and the critical behavior of the thin films strongly depends on the feature of the surface.展开更多
The ultrathin aluminum films with thickness in the range of 2~60 nm have been deposited by dc magnetron sputtering apparatus. Reflectance and transmittance of the obtained samples were measured with a WFZ-900-D4 UV/V...The ultrathin aluminum films with thickness in the range of 2~60 nm have been deposited by dc magnetron sputtering apparatus. Reflectance and transmittance of the obtained samples were measured with a WFZ-900-D4 UV/VIS spectrophotometer. The optical constant (n, k) and permittivity (ε', ε') were determined by applying Newton-Simpson recurrent substitution method. The results indicate that the electromagnetic constitutive characteristic of ultrathin aluminum films is a function of thickness and has obvious size effect.展开更多
The concept of the flowing film jigging was first applied to the flowing film concentration area.The flowingfilm jigging function is an important element of the new process,in jection-flowing film centrifugation(IFFC)...The concept of the flowing film jigging was first applied to the flowing film concentration area.The flowingfilm jigging function is an important element of the new process,in jection-flowing film centrifugation(IFFC),for separating and recovering minerals of ultrafine sizes.展开更多
The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-ener...The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.展开更多
As electrodes and electrical interconnects in flexible electronic devices,metal films are one of the weakest components in the system against mechanical deformation in daily use.Fatigue reliability at nanoscale become...As electrodes and electrical interconnects in flexible electronic devices,metal films are one of the weakest components in the system against mechanical deformation in daily use.Fatigue reliability at nanoscale becomes a practical concern for these flexible electronic devices.This review introduces state-of-the-art fatigue testing techniques and evaluation methods for thin metal films and conductive interconnect materials constrained by a substrate.Then,experimental results about fatigue damage behaviors,fatigue properties and fatigue life prediction are summarized.Furthermore,fundamental insights into fatigue mechanisms of metals at the nanoscale and the size effects on fatigue properties are elucidated.Finally,the perspectives of studies on fatigue of thin metal films constrained by a substrate are proposed.展开更多
The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmissi...The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.展开更多
A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for in...A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for investigating the influences of starch dodecenylsuccinylation upon the performances such as apparent viscosity and surface tension of starch paste, film behaviors,and adhesion to fibers for warp sizing. It was found that the dodecenylsuccinylation was able to reduce the surface tension of cooked starch paste and enhance the adhesion of starch to polyester fibers. It was also capable of depressing the brittleness of native starch and improving the mechanical behaviours such as breaking elongation and work-to-break of starch film. Initial increase in DS level of dodecenylsuccinylation enhanced these positive effects,while excessively increasing the level resulted in marked reduction in tensile strength of starch film and significant decrement in reaction efficiency. X-ray diffraction patterns of starch films showed the dodecenylsuccinates derivatized onto the backbones of starch depressed the degree of crystallinity of starch film. Based on the paste behaviors, adhesion, and film properties, the dodecenylsuccinylation level is recommended in a range of 0. 015-0. 025 for sizing polyester warps.展开更多
基金This work was financially supported by Foundation for Uni-versity Key Teacher by the Ministry of Education, the National Natu-ral Science Foundation of China (No. 50072016) and the Key Re-search Project of the Ministry of Education(No.99087)
文摘Transparent anatase TiO2 nanometer thin films with photocatalytic activity were prepared via the sol-gel method on soda-lime glass. The thickness , crystalline phase, grain size, surface hydroxyl amount and so on were characterized by scanning electron microscopy (SEM) , X-ray diffraction (XRD), transmission electron microscopy ( TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer ( UV-VIS). The photocatalytic activity of TiO2 thin films was evaluated for the photocatalytic decolorization of aqueous methyl orange . The effects of film thickness on the crystalline phase, grain size, transmittance and photocatalytic activity of nanometer Ti02 thin films were discussed.
基金Project supported by the National Basic Research Program of China(Grant No.2006CB91304)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘The grain size and surface morphology of sputtered Au films are studied by x-ray diffraction and atomic force microscope. For as-deposited samples the grain growth mechanism is consistent with the two-dimensional (2D) theory, which gives relatively low diffusion coefficient during deposition. Annealing process demonstrates the secondary grain growth mechanism in which the thickness dependence of grain boundary energy plays a key role. The surface roughness increases with the increase of grain size.
基金Project supported by the Key Project of the National Natural Science Foundation of China(Grant No.U1809210)the National Natural Science Foundation of China(Grant Nos.50972129 and 50602039)+4 种基金the International Science Technology Cooperation Program of China(Grant No.2014DFR51160)the National Key Research and Development Program of China(Grant No.2016YFE0133200)the European Union’s Horizon 2020 Research and Innovation Staff Exchange(RISE)Scheme(Grant No.734578)the Belt and Road International Cooperation Project from Key Research and Development Program of Zhejiang Province,China(Grant No.2018C04021)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LQ15A040004 and LY18E020013)
文摘Microcrystalline diamond(MCD)films with different grain sizes ranging from 160 nm to 2200 nm are prepared by using a hot filament chemical vapor deposition(HFCVD)system,and the influences of grain size and structural features on optical properties are investigated.The results show that the film with grain size in a range of 160 nm–310 nm exhibits a higher refractive index in a range of(2.77–2.92).With grain size increasing to 620±300 nm,the refractive index shows a value between 2.39 and 2.47,approaching to that of natural diamond(2.37–2.55),and a lower extinction coefficient value between 0.08 and 0.77.When the grain size increases to 2200 nm,the value of refractive index increases to a value between 2.66 and 2.81,and the extinction coefficient increases to a value in a range of 0.22–1.28.Visible Raman spectroscopy measurements show that all samples have distinct diamond peaks located in a range of 1331 cm-1–1333 cm-1,the content of diamond phase increases gradually as grain size increases,and the amount of trans-polyacetylene(TPA)content decreases.Meanwhile,the sp2 carbon clusters content and its full-width-at-half-maximum(FWHM)value are significantly reduced in MCD film with a grain size of 620 nm,which is beneficial to the improvement of the optical properties of the films.
基金Funded by National Scholastic Athletics Foundotion(NSAF)(No.U1330113)National Natural Science Foundation of China(No.81271953)
文摘Wafer curvature method has been applied to determine the internal stress in the films using Stoney's equation.During the film deposition,the wafer fixation on the sample holder will restrict the deformation of the rectangle-shaped wafer,which may result in the stress datum difference along length and width direction.In this paper,the effect of wafer size and the wafer fixation on the TiN film internal stress measured by wafer curvature method was discussed.The rectangle-shaped wafers with different length/width ratios(L/W=1:1,2:1,3:1 and 4:1) were fixed as a cantilever beam.After the TiN films deposition,the profiles of the film/wafer were measured using a stylus profilometer and then the internal stress was calculated using the Stoney equation in the film.The results showed that the fixed end of the wafers limited to some degree the curvature of the wafers along the width direction.For film internal stress measured by wafer curvature method,the wafer profile should be scanned along the length direction and the scan distance should be greater than or equal to half of wafer length.When the length/width ratio of the wafer reached 3:1,the wafer curvature and the calculated stress were basically the same at different positions along the length direction.For film internal stress measured by wafer curvature method,it was recommended that the length/width ratio of wafer should be considered to be greater than or equal to 3:1,and the deformed profile was scanned along the length direction.
基金This work was funded by the Special Funds for Major State Basic Research Project (Grant No. 95-12-G1999064800) and National Natural Science Foundation of China (Grant No. 20004011 & 20023003).
文摘The film formation process of micro-PS particles (diameter 742 nm) and nano-PS particles (diameter 29 nm) was studied by atomic force microscopy and differential scanning calorimetry. During a step heating process, the particles were annealed for 0.5 h at each selected temperature. It was found that the deformation and interdiffusion temperatures of the micro-PS particles are ca. 120-130degreesC and 140-150degreesC, that of the nano-PS particles are 90degreesC and 100-110degreesC respectively. The DSC traces of nano-PS particles showed that there was an exothermic peak near T-g after annealing for 0.5 h at the selected temperatures below 90degreesC; otherwise, the exothermic peak disappeared after annealing at 100degreesC or above. Compared with the micro-PS particles, the sintering process of nano-PS particles occurs at much lower temperature determined by the confined state of polymer chains with higher conformational energy in nano-particles, and completes in a much narrower temperature range driven mainly by the larger total surface energy.
基金the Center for Smart Materials of The Hong Kong Polytechnic University the Earmarked Research Grant(Account No.B-Q 363)allocated by the Hong Kong Research Grants Council
文摘The size effects of the critical behaviors for the systems of interacting spins are discussed extensively inliterature.In this paper,the finite-size dependence of the critical temperature and susceptibility of the ferroelectric thinfilm are investigated numerically based on the four-state Potts model with the nearest-neighbor interactions between thedipole moments.The four orientations of the domains exist in the ferroelectric film and the movement of the domainwalls determines the polarization switching process besides the boundary conditions of the film.The critical exponentsare obtained and our investigations show that the boundary conditions play the important roles for the ferroelectricproperties of the thin films and the critical behavior of the thin films strongly depends on the feature of the surface.
基金the Advance FOundation of National Defense is greatly appreciated.
文摘The ultrathin aluminum films with thickness in the range of 2~60 nm have been deposited by dc magnetron sputtering apparatus. Reflectance and transmittance of the obtained samples were measured with a WFZ-900-D4 UV/VIS spectrophotometer. The optical constant (n, k) and permittivity (ε', ε') were determined by applying Newton-Simpson recurrent substitution method. The results indicate that the electromagnetic constitutive characteristic of ultrathin aluminum films is a function of thickness and has obvious size effect.
文摘The concept of the flowing film jigging was first applied to the flowing film concentration area.The flowingfilm jigging function is an important element of the new process,in jection-flowing film centrifugation(IFFC),for separating and recovering minerals of ultrafine sizes.
基金supported by the National Natural Science Foundation of China (10772096)
文摘The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.
基金supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51601198, 51671050 and 51571199)
文摘As electrodes and electrical interconnects in flexible electronic devices,metal films are one of the weakest components in the system against mechanical deformation in daily use.Fatigue reliability at nanoscale becomes a practical concern for these flexible electronic devices.This review introduces state-of-the-art fatigue testing techniques and evaluation methods for thin metal films and conductive interconnect materials constrained by a substrate.Then,experimental results about fatigue damage behaviors,fatigue properties and fatigue life prediction are summarized.Furthermore,fundamental insights into fatigue mechanisms of metals at the nanoscale and the size effects on fatigue properties are elucidated.Finally,the perspectives of studies on fatigue of thin metal films constrained by a substrate are proposed.
基金This work was financially supported by the Foundation for University Key Teachers by the Ministry of Education, theKey Resear
文摘The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.
基金the Fund of Anhui Province Science Research Projects,China(No.1106b0105062)the Research Foundation Program of Scientific and Technological Innovation Team of College and University at the Provincial Level of Anhui,China(No.TD200710)
文摘A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for investigating the influences of starch dodecenylsuccinylation upon the performances such as apparent viscosity and surface tension of starch paste, film behaviors,and adhesion to fibers for warp sizing. It was found that the dodecenylsuccinylation was able to reduce the surface tension of cooked starch paste and enhance the adhesion of starch to polyester fibers. It was also capable of depressing the brittleness of native starch and improving the mechanical behaviours such as breaking elongation and work-to-break of starch film. Initial increase in DS level of dodecenylsuccinylation enhanced these positive effects,while excessively increasing the level resulted in marked reduction in tensile strength of starch film and significant decrement in reaction efficiency. X-ray diffraction patterns of starch films showed the dodecenylsuccinates derivatized onto the backbones of starch depressed the degree of crystallinity of starch film. Based on the paste behaviors, adhesion, and film properties, the dodecenylsuccinylation level is recommended in a range of 0. 015-0. 025 for sizing polyester warps.