The ultrathin aluminum films with thickness in the range of 2~60 nm have been deposited by dc magnetron sputtering apparatus. Reflectance and transmittance of the obtained samples were measured with a WFZ-900-D4 UV/V...The ultrathin aluminum films with thickness in the range of 2~60 nm have been deposited by dc magnetron sputtering apparatus. Reflectance and transmittance of the obtained samples were measured with a WFZ-900-D4 UV/VIS spectrophotometer. The optical constant (n, k) and permittivity (ε', ε') were determined by applying Newton-Simpson recurrent substitution method. The results indicate that the electromagnetic constitutive characteristic of ultrathin aluminum films is a function of thickness and has obvious size effect.展开更多
Wafer curvature method has been applied to determine the internal stress in the films using Stoney's equation.During the film deposition,the wafer fixation on the sample holder will restrict the deformation of the re...Wafer curvature method has been applied to determine the internal stress in the films using Stoney's equation.During the film deposition,the wafer fixation on the sample holder will restrict the deformation of the rectangle-shaped wafer,which may result in the stress datum difference along length and width direction.In this paper,the effect of wafer size and the wafer fixation on the TiN film internal stress measured by wafer curvature method was discussed.The rectangle-shaped wafers with different length/width ratios(L/W=1:1,2:1,3:1 and 4:1) were fixed as a cantilever beam.After the TiN films deposition,the profiles of the film/wafer were measured using a stylus profilometer and then the internal stress was calculated using the Stoney equation in the film.The results showed that the fixed end of the wafers limited to some degree the curvature of the wafers along the width direction.For film internal stress measured by wafer curvature method,the wafer profile should be scanned along the length direction and the scan distance should be greater than or equal to half of wafer length.When the length/width ratio of the wafer reached 3:1,the wafer curvature and the calculated stress were basically the same at different positions along the length direction.For film internal stress measured by wafer curvature method,it was recommended that the length/width ratio of wafer should be considered to be greater than or equal to 3:1,and the deformed profile was scanned along the length direction.展开更多
An Fe–44Ni nanocrystalline(NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods an...An Fe–44Ni nanocrystalline(NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase(γ-(Fe,Ni)) and a body-centered cubic phase(α-(Fe,Ni)) when it is annealed at temperatures less than 400℃. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500℃ and 600℃ do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.展开更多
基金the Advance FOundation of National Defense is greatly appreciated.
文摘The ultrathin aluminum films with thickness in the range of 2~60 nm have been deposited by dc magnetron sputtering apparatus. Reflectance and transmittance of the obtained samples were measured with a WFZ-900-D4 UV/VIS spectrophotometer. The optical constant (n, k) and permittivity (ε', ε') were determined by applying Newton-Simpson recurrent substitution method. The results indicate that the electromagnetic constitutive characteristic of ultrathin aluminum films is a function of thickness and has obvious size effect.
基金Funded by National Scholastic Athletics Foundotion(NSAF)(No.U1330113)National Natural Science Foundation of China(No.81271953)
文摘Wafer curvature method has been applied to determine the internal stress in the films using Stoney's equation.During the film deposition,the wafer fixation on the sample holder will restrict the deformation of the rectangle-shaped wafer,which may result in the stress datum difference along length and width direction.In this paper,the effect of wafer size and the wafer fixation on the TiN film internal stress measured by wafer curvature method was discussed.The rectangle-shaped wafers with different length/width ratios(L/W=1:1,2:1,3:1 and 4:1) were fixed as a cantilever beam.After the TiN films deposition,the profiles of the film/wafer were measured using a stylus profilometer and then the internal stress was calculated using the Stoney equation in the film.The results showed that the fixed end of the wafers limited to some degree the curvature of the wafers along the width direction.For film internal stress measured by wafer curvature method,the wafer profile should be scanned along the length direction and the scan distance should be greater than or equal to half of wafer length.When the length/width ratio of the wafer reached 3:1,the wafer curvature and the calculated stress were basically the same at different positions along the length direction.For film internal stress measured by wafer curvature method,it was recommended that the length/width ratio of wafer should be considered to be greater than or equal to 3:1,and the deformed profile was scanned along the length direction.
基金financially supported by the Major State Basic Research Development Program of China (No. 2014CB643300)the National Natural Science Foundation of China (No. U1560104)the National Environmental Corrosion Platform (NECP)
文摘An Fe–44Ni nanocrystalline(NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase(γ-(Fe,Ni)) and a body-centered cubic phase(α-(Fe,Ni)) when it is annealed at temperatures less than 400℃. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500℃ and 600℃ do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.