期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
In-situ quantitative monitoring of fatigue crack using fastest time of flight diffraction method 被引量:2
1
作者 杜朝亮 王奕首 +2 位作者 高东岳 刘科海 卿新林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2679-2684,共6页
Due to the cyclic loading and longtime exposure under extreme environment conditions, fatigue cracks often generate in the aircraft metal structures, i.e. wing skin, fuselage skin, strigners, pylons. These cracks coul... Due to the cyclic loading and longtime exposure under extreme environment conditions, fatigue cracks often generate in the aircraft metal structures, i.e. wing skin, fuselage skin, strigners, pylons. These cracks could cause severe damages to the aircraft structures. Thus the position and size monitoring of fatigue cracks in the metal structures is very important to manufacturers as well as maintenance personnel for significantly improving the safety and reliability of aircraft. Much progress has been made for crack position monitoring in the past few years. However, the crack size monitoring is still very challenging. Fastest time of flight diffraction (FTOFD) method was developed to monitor both the position and size of a crack. FTOFD method uses an integrated sensor network to activate and receive ultrasonic waves in a structure. Diffraction waves will be generated when the ultrasonic waves pass a crack. These diffraction waves are received and analyzed to get the position and size of the crack. The experiment results show that the monitored size of the simulated crack is very close to the real size of the crack, and for frequencies of 350 and 400 kHz, the monitoring errors are both smaller than 5%. 展开更多
关键词 structure health monitoring fatigue crack diffraction waves crack size quantification
下载PDF
Simultaneous size characterization and mass quantification of the in vivo core-biocorona structure and dissolved species of silver nanoparticles 被引量:1
2
作者 Lijie Dong Xiaoxia Zhou +2 位作者 Ligang Hu Yongguang Yin Jingfu Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期227-235,共9页
Size characterization of silver nanoparticles with biomolecule corona(AgNP@BCs) and mass quantification of various silver species in organisms are essential for understanding the in vivo transformation of Ag NPs. He... Size characterization of silver nanoparticles with biomolecule corona(AgNP@BCs) and mass quantification of various silver species in organisms are essential for understanding the in vivo transformation of Ag NPs. Herein, we report a versatile method that allows simultaneous determination of the size of AgNP@BCs and mass concentration of various silver species in rat liver. Both particulate and ionic silver were extracted in their original forms from the organs by alkaline digestion, and analyzed by size exclusion chromatography combined with inductively coupled plasma mass spectrometry(SEC-ICP-MS). While the silver mass concentrations were quantified by ICP-MS with a detection limit of 0.1 μg/g, the effective diameter of AgNP@BCs was determined based on the retention time in SEC separation with size discrimination of 0.6-3.3 nm. More importantly, we found that the BC thickness of AgNP@BCs is core size independent, and a linear correlation was found between the effective diameter and core diameter of AgNP@BCs in extracted tissues, which was used to calibrate the core diameter with standard deviations in the range of 0.2-1.1 nm. The utility of this strategy was demonstrated through application to rat livers in vivo. Our method is powerful for investigating the transformation mechanism of Ag NPs in vivo. 展开更多
关键词 Silver nanoparticle In vivo study size characterization Mass quantification size exclusion chromatography
原文传递
A Lamb wave quantification model for inclined cracks with experimental validation 被引量:5
3
作者 Jingjing HE Haode HUO +1 位作者 Xuefei GUAN Jinsong YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期601-611,共11页
This paper investigates the influence of crack orientation on damage quantification using Lamb wave in plate structures. Finite element simulation is performed to acquire Lamb wave signal responses for different confi... This paper investigates the influence of crack orientation on damage quantification using Lamb wave in plate structures. Finite element simulation is performed to acquire Lamb wave signal responses for different configurations of crack orientations and crack lengths. Two Lamb wave features, namely the normalized amplitude and the phase change, are used as damage sensitive features to develop a crack size quantification model. A hypothesis based on the geometrical influence on signal features is proposed, and the crack size quantification model incorporating the orientation angle is established using the hypothesis. An index of Probability of Reliable Quantification(PRQ) is proposed to evaluate the performance of the model. The index can be used to determine the sizing risk in terms of probabilities. A realistic aluminum plate is used to obtain the experimental data using piezoelectric(PZT) wafer-type sensors around a center through crack. The experimental data are used to validate the overall method. Results indicate that the proposed model can yield reliable results for size quantification of inclined cracks. 展开更多
关键词 Crack orientation Crack size quantification model Incident angle Lamb wave Probability of reliable quantification(PRQ)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部