A cruise was undertaken from 3rd to 8th November 2004 in Changjiang(Yangtze) River Estuary and its adjacent waters to investigate the spatial biomass distribution and size composition of phytoplankton.Chlorophyll-a(Ch...A cruise was undertaken from 3rd to 8th November 2004 in Changjiang(Yangtze) River Estuary and its adjacent waters to investigate the spatial biomass distribution and size composition of phytoplankton.Chlorophyll-a(Chl-a) concentration ranged 0.42-1.17 μg L-1 and 0.41-10.43 μg L-1 inside and outside the river mouth,with the mean value 0.73 μg L-1 and 1.86 μg L-1,respectively.Compared with the Chl-a concentration in summer of 2004,the mean value was much lower inside,and a little higher outside the river mouth.The maximal Chl-a was 10.43 μg L-1 at station 18(122.67°E,31.25°N),and the region of high Chl-a concentration was observed in the central survey area between 122.5°E and 123.0°E.In the stations located east of 122.5°E,Chl-a concentration was generally high in the upper layers above 5 m due to water stratification.In the survey area,the average Chl-a in sizes of >20 μm and <20 μm was 0.28 μg L-1 and 1.40 μg L-1,respectively.High Chl-a concentration of <20 μm size-fraction indicated that the nanophytoplankton and picophytoplankton contributed the most to the biomass of phytoplankton.Skeletonema costatum,Prorocentrum micans and Scrippsiella trochoidea were the dominant species in surface water.The spatial distribution of cell abundance of phytoplankton was patchy and did not agree well with that of Chl-a,as the cell abundance could not distinguish the differences in shape and size of phytoplankton cells.Nitrate and silicate behaved conservatively,but the former could probably be the limitation factor to algal biomass at offshore stations.The distribution of phosphate scattered considerably,and its relation to the phytoplankton biomass was complicated.展开更多
Spatial distribution of phaeopigment and size-fractionated chlorophyll a(Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea(NSCS) during a survey from 20 August ...Spatial distribution of phaeopigment and size-fractionated chlorophyll a(Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea(NSCS) during a survey from 20 August to 12 September, 2014. The total Chl a concentration varied from 0.006 to 1.488 μg/L with a mean value of 0.259±0.247(mean±standard deviation) μg/L. Chl a concentration was generally higher in shallow water(<200 m) than in deep water(>200 m), with mean values of 0.364±0.311 μg/L and 0.206±0.192 μg/L respectively. Vertically, the maximum total Chl a concentration appeared at depths of 30–50 m and gradually decreased below 100 m. The size-fractionated Chl a concentrations of grid stations and time-series stations(SEATS and J4) were determined, with values of pico-(0.7–2 μm), nano-(2–20 μm) and micro- plankton(20–200 μm) ranging from 0.001–0.287(0.093±0.071 μg/L), 0.004–1.149(0.148±0.192 μg/L) and 0.001–0.208(0.023±0.036 μg/L), respectively. Phaeopigment concentrations were determined at specifi c depths at ten stations, except for at station A9, and varied from 0.007 to 0.572(0.127±0.164) μg/L. Nano-and pico-plankton were the major contributors to total phytoplankton biomass, accounting for 50.99%±15.01% and 39.30%±15.41%, respectively, whereas microplankton only accounted for 9.39%±8.66%. The results indicate that the contributions of microplankton to total Chl a biomass were less important than picoplankton or nanoplankton in the surveyed NSCS. Diff erent sized-Chl a had similar spatial patterns, with peak values all observed in subsurface waters(30–50 m). The summer monsoon, Kuroshio waters, Zhujiang(Pearl) River plume, and hydrological conditions are speculated to be the factors controlling the abundance and spatial heterogeneity of Chl a biomass in the NSCS.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
The size-fractionated composition of phytoplankton greatly influences the transfer efficiency of biomass in pelagic food chains and the biological carbon flux from surface waters to the deep sea.To better understand p...The size-fractionated composition of phytoplankton greatly influences the transfer efficiency of biomass in pelagic food chains and the biological carbon flux from surface waters to the deep sea.To better understand phytoplankton abundance and composition in polynya,ice zone,and open ocean regions of the Amundsen Sea Sector of the Southern Ocean(110°W-150°W),its size-fractionated distribution and vertical structure are reported for January to February 2020.Vertical integrated(0-200 m)chlorophyll(Chl)a concentrations within Amundsen polynya regions are significantly higher than those within ice zone(t test,p<0.01)and open ocean(t test,p<0.01)regions,averaging 372.3±189.0,146.2±152.1,and 49.0±20.8 mg·m^(−2),respectively.High Chl is associated with shallow mixed-layer depths and near-shelf regions,especially at the southern ends of 112°W and 145°W.Netplankton(>20μm)contribute 60%of the total Chl in Amundsen polynya and sea ice areas,and form subsurface chlorophyll maxima(SCM)above the pycnocline in the upper water column,probably because of diatom blooms.Net-,nano-,and picoplankton comprise 39%,32%,and 29%of total Chl in open ocean stations,respectively.The open-ocean SCM migrates deeper and is below the pycnocline.The Amundsen Sea SCM is moderately,positively correlated with the euphotic zone depth and moderately,negatively correlated with column-integrated net-and nanoplankton Chl.展开更多
Investigations of chlorophyll a and primary productivity were carried out inthe Bering Sea along the BR line and the BS line during the Second Chinese National Arctic ResearchExpedition in the summer of 2003.The resul...Investigations of chlorophyll a and primary productivity were carried out inthe Bering Sea along the BR line and the BS line during the Second Chinese National Arctic ResearchExpedition in the summer of 2003.The results showed that the surface chlorophyll a concentrationswere 0.199~1.170μg/dm^(3),and the average value was 0.723μg/dm^(3) on the BR line.For the BSline,the surface chlorophyll a concentrations were 0.519~4.644μg/dm^(3)(average 1.605μg/dm^(3))and 0.568~14.968μg/dm^(3)(average 5.311μg/dm^(3))during the early and late summer,respectively.The average value in the late summer was much higher than that in the early summer.The high values(more than 4.0μg/dm^(3))occurred at stations of the BS line in the southern Bering Strait.Thechlorophyll a concentrations in the subsurface layer were higher than those in the surface layer.The results of the size-fractionated chlorophyll a showed that the contribution of the picoplanktonto total chlorophyll a was the predominance at the early summer and the contribution of thenetplankton was the predominance at the late summer.The carbon potential primary productivitiesvaried between 0.471 and 1.147 mg/(m^(3)·h)on the BR line,with average rates of 0.728 mg/(m^(3)·h).The primary productivities on the BS line were much higher than those of the BR line,ranging from1.227 mg/(m^(3)·h)at the early summer to 19.046 mg/(m^(3)·h)at the late summer.The results of thesize-fractionated primary productivity showed that the contribution of the nanoplankton to totalproductivity was the predominance at the early summer and the contribution of the netplankton waspredominance at the late summer.The assimilation number of photosynthesis was 0.45~2.80 mg/(mg·h)in the surveyed stations.展开更多
The distributions of chlorophyll a concentration, primary production and new productionwere observed in the Laizhou Bay of the Bohai Sea in both spring and neap tides during July 1997. The results showed that there we...The distributions of chlorophyll a concentration, primary production and new productionwere observed in the Laizhou Bay of the Bohai Sea in both spring and neap tides during July 1997. The results showed that there were marked features of spatial zonation in the surveyed area, due to the differences between the geographic environment and the hydrological conditions. Chlorophyll a, primary production and new production were all higher in spring tides than that in neap tides in the Laizhou Bay. The highest values of these parameters were encountered in the central regions of the bay. At most stations, chlorophyll a concentrations at the bottom were higher than that at the surface. The results of size-fractionated chlorophyll a and primary production showed that contributions of nanocombining pi-coplankton ( <20 μm) to total chlorophyll a and primary production were dominant in phytoplankton community biomass and production of the Laizhou Bay. The environmental factors, primary production and new production in the Laizhou Bay are compared with other sea areas.展开更多
During June 1997 cruise by R/V Science No.l, observations on temporal and spatialvariations of the size-fractionated phytoplankton standing stock and primary production were carried out in the Bohai Sea. The size-frac...During June 1997 cruise by R/V Science No.l, observations on temporal and spatialvariations of the size-fractionated phytoplankton standing stock and primary production were carried out in the Bohai Sea. The size-fractionated chlorophyll a (Chl a) and primary production, photosynthet-ically available radiation (PAR), as well as the related physico-oceanographic and zooplanktonic parameters were measured at five time-series observation stations representing sub-areas of the sea. Results obtained show that there were the marked features of spatial zonation of Chl a and primary production in the Bohai Sea. The values in the Laizhou Bay, the Liaodong Gulf and the Bohai Gulf were high and showed close relation with tidal fluctuations, i.e. high Chi a concentration occurred during high tide in the Laizhou Bay, and during low tide in the Liaodong Gulf and the Bohai Gulf. In the strait and the central region of the Bohai Sea, the values were relatively low and no relationship with tidal fluctuation could be found. Chlorophyll a concentration vertically decreased from surface to bottom in the Liaodong Gulf and the Bohai Gulf, while it increased in the Laizhou Bay, the strait and the central region of the Bohai Sea, and the highest value was encountered at the bottom. Size-fractionation results showed that nano - combining pico -plankton ( < 20 μm) predominated in phytoplankton communities of the Bohai Sea during late spring. The average contribution to total Chl a in each station ranged 76% -95 % (mean is 87 %). The contribution of net (> 20 μm), nano - (2- 20 fan) and picoplankton (< 2 μm) was 13% , 63% and 24% to total production, and 9% , 53% and 38% to total Chl a, respectively. It proved the importance of nano - and pico -plankton in phytoplankton communities in the Bohai Sea e-cosystems. In this paper the factors, such as light intensity and zooplankton grazing pressure, governing standing stock and production of phytoplankton in the Bohai Sea were also discussed.展开更多
Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but a...Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier.展开更多
The size structure of phytoplankton has considerable effects on the energy flow and nutrient cycling in themarine ecosystem,and thus is important to marine food web and biological pump.However,its dynamics in the high...The size structure of phytoplankton has considerable effects on the energy flow and nutrient cycling in themarine ecosystem,and thus is important to marine food web and biological pump.However,its dynamics in the high-latitude Arctic Ocean,particularly ice-covered areas,remain poorly understood.We investigated size-fractionated chlorophyll a(Chl a)and related environmental parameters in the highly ice-covered Arctic Ocean during the summer of 2020,and analyzed the relationship between Chl adistribution and water mass through cluster analysis.Results showed that inorganic nutrients were typically depleted in the upper layer of the Canada Basin region,and that phytoplankton biomass was extremely low(mean=0.05±0.18 mg·m^(−3))in the near-surface layer(upper 25 m).More than 80%of Chl a values were<0.1 mg·m^(−3) in the water column(0-200 m),but high values appeared at the ice edge or in corresponding ice areas on the shelf.Additionally,the mean contribution of both nanoplankton(2-20μm)(41%)and picoplankton(<2μm)(40%)was significantly higher than that of microplankton(20-200μm)(19%).Notably,the typical subsurface chlorophyll maximum(0.1 mg·m^(−3))was found north of 80°N,where the concentration of sea ice reached approximately 100%.The Chl aprofile results showed that the deep chlorophyll maximum of total-,micro-,nano-,and picoplankton was located at depth of 40,39,41,and 38 m,respectively,indicating that nutrients are the primary factor limiting phytoplankton growth in the ice-covered Arctic Ocean during summer.These phenomena suggest that,despite the previous literatures pointing to significant light limitation under the Arctic ice,the primary limiting factor for phytoplankton in summer is still nutrient.展开更多
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ...Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.展开更多
The investigation of size-fractionated chlorophyll a and primary productivity were carried out in three longitudinal sections (63°-69°12'S, 70°30'E, 73°E and 75(30'E) at December 18-26,...The investigation of size-fractionated chlorophyll a and primary productivity were carried out in three longitudinal sections (63°-69°12'S, 70°30'E, 73°E and 75(30'E) at December 18-26, 1998 and January 12-18, 1999 in Prydz Bay and its north sea area, Antarctica. The results showed that surface chlorophyll a concentration were 0. 16 -3. 99 μg dm-3. The high values of chlorophyll a concentration (more than 3.5 μg dm -3) were in Prydz Bay and in the west Ladies Bank. The average chlorophyll a concentration at sub-surface layer was higher than that at surface layer; its concentration at the deeper layers of 50 m decreased with increasing depth and that at 200 m depth was only 0. 01 -0. 95μg dm -3. The results of size-fractionated chlorophyll a showed that the contribution of the netplanktion to total chlorophyll a was 56% , those of the nanoplankton and the picoplankton were 24% and 20% respectively in the surveyed area. The potential primary productivity at the euphotic zone in the surveyed area was 0. 11 - 11. 67 mgC m-3h-1 and average value was 2.00 ±2.80 mgC m h . The in-situ productivity in the bay and the continental shelf was higher and that in the deep-sea area was lower. The assimilation number of photosynthesis was 1.53±1. 11 mgC/(mg Chi a · h). The results of size-fractionated primary productivity show that the contribution of the netplanktion to total productivity was 58% , those of the nanoplankton and the picoplankton were 26% and 16% respectively. The cell abundance of phytoplankton was 1. 6 × 103 - 164. 8 × 103 cell dm-3 in the surface water.展开更多
Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees w...Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees will likely be observed in the future.We aimed to assess the impact of these two neophytes,which differ in the biomass range and nitrogen-fixing abilities observed in Central European conditions,on the relative aboveground biomass increments of native oaks Qucrcus robur and Q.petraea and Scots pine Pinus sylvestris.We aimed to increase our understanding of the relationship between facilitation and competition between woody alien species and overstory native trees.We established 72 circular plots(0.05 ha)in two different forest habitat types and stands varying in age in western Poland.We chose plots with different abundances of the studied neophytes to determine how effects scaled along the quantitative invasion gradient.Furthermore,we collected growth cores of the studied native species,and we calculated aboveground biomass increments at the tree and stand levels.Then,we used generalized linear mixed-effects models to assess the impact of invasive species abundances on relative aboveground biomass increments of native tree species.We did not find a biologically or statistically significant impact of invasive R.pseudoacacia or P.serotina on the relative aboveground,biomass increments of native oaks and pines along the quantitative gradient of invader biomass or on the proportion of total stand biomass accounted for by invaders.The neophytes did not act as native tree growth stimulators but also did not compete with them for resources,which would escalate the negative impact of climate change on pines and oaks.The neophytes should not significantly modify the carbon sequestration capacity of the native species.Our work combines elements of the per capita effect of invasion with research on mixed forest management.展开更多
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con...The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.展开更多
Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired ...Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired electrocatalysis of an H_(2)evolution reaction(HER)and furfural oxidation reaction(FOR).The FOR afforded a high furfural conversion(44.2%)with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte.The Pt-Co_(3)O_(4)electrode exhibited a small overpotential of 290 mV at 10 mA cm^(-2).As an anode and cathode in an electrolyzer system,the Pt-Co_(3)O_(4)electrocatalyst required only a small applied cell voltage of~1.83 V to deliver 10 mA cm^(-2),compared with that of the pure water electrolyzer(OER||HER,~1.99 V).This study simultaneously realized the integrated production of energy-saving H_(2)fuel at the cathode and 2-furoic acid at the anode.展开更多
We determined whether the inclusion of 100 g/kg dry matter of grape pomace silage (GPS) and grape pomace bran (GPB) as substitutes for other traditional fiber sources in the diet of steers (Charolais x Nellore) would ...We determined whether the inclusion of 100 g/kg dry matter of grape pomace silage (GPS) and grape pomace bran (GPB) as substitutes for other traditional fiber sources in the diet of steers (Charolais x Nellore) would improve carcass characteristics, meat quality and composition, and shelf life. Twenty-four animals (248 ± 19.32 kg of initial body weight) were fed a high concentrate diet for 121 days. Carcass characteristics were measured, and the longissimus dorsi muscle was analyzed for fatty acid (FA) profile and composition. The meat was sliced and stored in air-permeable packages for 10 days. On each sampling day (d 1, 3, 7, and 10), oxidative stability, bacterial load, lipid and protein oxidation, and staining were analyzed. The experimental diets influenced the pH of cold carcasses only. The GPS group had a higher pH than the control. The GPS and GPB groups showed improved oxidant status (i.e., lower lipid peroxidation and concentrations of reactive oxygen species were in the meat of both groups than in control). On the first day of storage, the antioxidant enzyme glutathione S-transferase activity was more significant in the meat of the GPS and GPB groups than in the control. The bacterial loads in the meat were attenuated by GPS inclusion;there were lower total coliform counts and a trend toward lower counts for enterobacteria in the control group. The diets altered the FA profile of the meat;i.e., the GPB diet allowed for a more significant amount of the n-6 omegas in the meat, while the GPS diet showed a tendency for a more significant amount of n-6 and 9 omegas. Both diets (GPS and GPB) increased the amounts of long-chain FAs. The GPS diet decreased saturated FA levels. We conclude that the dietary treatments GPS and GPB are a promising alternative to maintain meat quality standards throughout in real-world retail conditions. These treatments gave rise to an improvement in the nutritional value of the meat due to the more significant amounts of FAs that improve human health.展开更多
Quantifying the biomass of saplings in the regeneration component is critical for understanding biogeochemical processes of forest ecosystems.However,accurate allometric equations have yet to be developed in sufficien...Quantifying the biomass of saplings in the regeneration component is critical for understanding biogeochemical processes of forest ecosystems.However,accurate allometric equations have yet to be developed in sufficient detail.To develop species-specific and generalized allometric equations,154 saplings of eight Fagaceae tree species in subtropical China’s evergreen broadleaved forests were collected.Three dendrometric variables,root collar diameter(d),height(h),and crown area(ca)were applied in the model by the weighted nonlinear seemingly unrelated regression method.Using only d as an input variable,the species-specific and generalized allometric equations estimated the aboveground biomass reasonably,with R _(adj)^(2) values generally>0.85.Adding h and/or ca improved the fitting of some biomass components to a certain extent.Generalized equations showed a relatively large coefficient of variation but comparable bias to species-specific equations.Only in the absence of species-specific equations at a given location are generalized equations for mixed species recommended.The developed regression equations can be used to accurately calculate the aboveground biomass of understory Fagaceae regeneration trees in China’s subtropical evergreen broadleaved forests.展开更多
1 About the Special Issue Editor Qiaoguang Li is an associate professor and master’s supervisor in the Department of College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering.He...1 About the Special Issue Editor Qiaoguang Li is an associate professor and master’s supervisor in the Department of College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering.He received his PhD from Institute of Chemical Industry of Forestry Products,Chinese Academy of Forestry in 2018.He has been focusing his research on the chemical basis and application of natural resources.He has published nearly 30 international peer reviewed papers and applied for 10 patents.展开更多
Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integratin...Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.展开更多
Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon...Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon bond cleavage of high selectivity,various functionalized molecules,such as organic acids,amides,esters,and nitriles,have great potential to be accessed from biomass.However,it has merely received finite concerns and interests in the biorefinery.This review first showcases the research progress on the electrocatalytic conversion of lipid/sugar-and lignin-derived molecules(e.g.,glycerol,mesoerythritol,xylose,glucose,1-phenylethanol,and cyclohexanol)into organic acids via specific carbon–carbon bond scission processes,with focus on disclosing reaction mechanisms,recognizing actual active species,and collecting feasible modification strategies.For the guidance of further extensive studies on biomass valorization,organic transformations via a variety of reactions,including decarboxylation,ring-opening,rearrangement,reductive hydrogenation,and carboxylation,are also disclosed for the construction of similar carbon skeletons/scaffolds.The remaining challenges,prospective applications,and future objectives in terms of biomass conversion are also proposed.This review is expected to provide references to develop renewed electrocatalytic carbon–carbon bond cleavage transformation paths/strategies for biomass upgrading.展开更多
基金Supported by the National Natural Sciences Foundation (No. 50339040)Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-YW-213 and KZCX3-SW-232)
文摘A cruise was undertaken from 3rd to 8th November 2004 in Changjiang(Yangtze) River Estuary and its adjacent waters to investigate the spatial biomass distribution and size composition of phytoplankton.Chlorophyll-a(Chl-a) concentration ranged 0.42-1.17 μg L-1 and 0.41-10.43 μg L-1 inside and outside the river mouth,with the mean value 0.73 μg L-1 and 1.86 μg L-1,respectively.Compared with the Chl-a concentration in summer of 2004,the mean value was much lower inside,and a little higher outside the river mouth.The maximal Chl-a was 10.43 μg L-1 at station 18(122.67°E,31.25°N),and the region of high Chl-a concentration was observed in the central survey area between 122.5°E and 123.0°E.In the stations located east of 122.5°E,Chl-a concentration was generally high in the upper layers above 5 m due to water stratification.In the survey area,the average Chl-a in sizes of >20 μm and <20 μm was 0.28 μg L-1 and 1.40 μg L-1,respectively.High Chl-a concentration of <20 μm size-fraction indicated that the nanophytoplankton and picophytoplankton contributed the most to the biomass of phytoplankton.Skeletonema costatum,Prorocentrum micans and Scrippsiella trochoidea were the dominant species in surface water.The spatial distribution of cell abundance of phytoplankton was patchy and did not agree well with that of Chl-a,as the cell abundance could not distinguish the differences in shape and size of phytoplankton cells.Nitrate and silicate behaved conservatively,but the former could probably be the limitation factor to algal biomass at offshore stations.The distribution of phosphate scattered considerably,and its relation to the phytoplankton biomass was complicated.
基金Supported by the Program for New Century Excellent Talents in University(No.NCET-12-1065)the Ocean Public Welfare Scientifi c Research Project(No.201105021-03)+3 种基金the National Natural Science Foundation of China(Nos.41276124,41176136)the Science Fund for University Creative Research Groups in Tianjin(No.TD12-5003)the Key Project of National Natural Science Foundation of Tianjin(No.12JCZDJC30100)to J Sunthe National Natural Science Foundation of China(No.41306118)to Y Feng
文摘Spatial distribution of phaeopigment and size-fractionated chlorophyll a(Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea(NSCS) during a survey from 20 August to 12 September, 2014. The total Chl a concentration varied from 0.006 to 1.488 μg/L with a mean value of 0.259±0.247(mean±standard deviation) μg/L. Chl a concentration was generally higher in shallow water(<200 m) than in deep water(>200 m), with mean values of 0.364±0.311 μg/L and 0.206±0.192 μg/L respectively. Vertically, the maximum total Chl a concentration appeared at depths of 30–50 m and gradually decreased below 100 m. The size-fractionated Chl a concentrations of grid stations and time-series stations(SEATS and J4) were determined, with values of pico-(0.7–2 μm), nano-(2–20 μm) and micro- plankton(20–200 μm) ranging from 0.001–0.287(0.093±0.071 μg/L), 0.004–1.149(0.148±0.192 μg/L) and 0.001–0.208(0.023±0.036 μg/L), respectively. Phaeopigment concentrations were determined at specifi c depths at ten stations, except for at station A9, and varied from 0.007 to 0.572(0.127±0.164) μg/L. Nano-and pico-plankton were the major contributors to total phytoplankton biomass, accounting for 50.99%±15.01% and 39.30%±15.41%, respectively, whereas microplankton only accounted for 9.39%±8.66%. The results indicate that the contributions of microplankton to total Chl a biomass were less important than picoplankton or nanoplankton in the surveyed NSCS. Diff erent sized-Chl a had similar spatial patterns, with peak values all observed in subsurface waters(30–50 m). The summer monsoon, Kuroshio waters, Zhujiang(Pearl) River plume, and hydrological conditions are speculated to be the factors controlling the abundance and spatial heterogeneity of Chl a biomass in the NSCS.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金This research was financially supported by National Polar Special Program“Impact and Response of Antarctic Seas to Climate Change”(Grant no.IRASCC 01-02-01)
文摘The size-fractionated composition of phytoplankton greatly influences the transfer efficiency of biomass in pelagic food chains and the biological carbon flux from surface waters to the deep sea.To better understand phytoplankton abundance and composition in polynya,ice zone,and open ocean regions of the Amundsen Sea Sector of the Southern Ocean(110°W-150°W),its size-fractionated distribution and vertical structure are reported for January to February 2020.Vertical integrated(0-200 m)chlorophyll(Chl)a concentrations within Amundsen polynya regions are significantly higher than those within ice zone(t test,p<0.01)and open ocean(t test,p<0.01)regions,averaging 372.3±189.0,146.2±152.1,and 49.0±20.8 mg·m^(−2),respectively.High Chl is associated with shallow mixed-layer depths and near-shelf regions,especially at the southern ends of 112°W and 145°W.Netplankton(>20μm)contribute 60%of the total Chl in Amundsen polynya and sea ice areas,and form subsurface chlorophyll maxima(SCM)above the pycnocline in the upper water column,probably because of diatom blooms.Net-,nano-,and picoplankton comprise 39%,32%,and 29%of total Chl in open ocean stations,respectively.The open-ocean SCM migrates deeper and is below the pycnocline.The Amundsen Sea SCM is moderately,positively correlated with the euphotic zone depth and moderately,negatively correlated with column-integrated net-and nanoplankton Chl.
基金supported by the National Natural Science Foundation of China under contract Nos 40476004 and 40476003.
文摘Investigations of chlorophyll a and primary productivity were carried out inthe Bering Sea along the BR line and the BS line during the Second Chinese National Arctic ResearchExpedition in the summer of 2003.The results showed that the surface chlorophyll a concentrationswere 0.199~1.170μg/dm^(3),and the average value was 0.723μg/dm^(3) on the BR line.For the BSline,the surface chlorophyll a concentrations were 0.519~4.644μg/dm^(3)(average 1.605μg/dm^(3))and 0.568~14.968μg/dm^(3)(average 5.311μg/dm^(3))during the early and late summer,respectively.The average value in the late summer was much higher than that in the early summer.The high values(more than 4.0μg/dm^(3))occurred at stations of the BS line in the southern Bering Strait.Thechlorophyll a concentrations in the subsurface layer were higher than those in the surface layer.The results of the size-fractionated chlorophyll a showed that the contribution of the picoplanktonto total chlorophyll a was the predominance at the early summer and the contribution of thenetplankton was the predominance at the late summer.The carbon potential primary productivitiesvaried between 0.471 and 1.147 mg/(m^(3)·h)on the BR line,with average rates of 0.728 mg/(m^(3)·h).The primary productivities on the BS line were much higher than those of the BR line,ranging from1.227 mg/(m^(3)·h)at the early summer to 19.046 mg/(m^(3)·h)at the late summer.The results of thesize-fractionated primary productivity showed that the contribution of the nanoplankton to totalproductivity was the predominance at the early summer and the contribution of the netplankton waspredominance at the late summer.The assimilation number of photosynthesis was 0.45~2.80 mg/(mg·h)in the surveyed stations.
基金This study was supported by the National Natural Science Foundation of China under contract No. 497900102.
文摘The distributions of chlorophyll a concentration, primary production and new productionwere observed in the Laizhou Bay of the Bohai Sea in both spring and neap tides during July 1997. The results showed that there were marked features of spatial zonation in the surveyed area, due to the differences between the geographic environment and the hydrological conditions. Chlorophyll a, primary production and new production were all higher in spring tides than that in neap tides in the Laizhou Bay. The highest values of these parameters were encountered in the central regions of the bay. At most stations, chlorophyll a concentrations at the bottom were higher than that at the surface. The results of size-fractionated chlorophyll a and primary production showed that contributions of nanocombining pi-coplankton ( <20 μm) to total chlorophyll a and primary production were dominant in phytoplankton community biomass and production of the Laizhou Bay. The environmental factors, primary production and new production in the Laizhou Bay are compared with other sea areas.
基金This study was supported by the National Natural Science Foundation of China (NSFC) under contract No. 49790010.
文摘During June 1997 cruise by R/V Science No.l, observations on temporal and spatialvariations of the size-fractionated phytoplankton standing stock and primary production were carried out in the Bohai Sea. The size-fractionated chlorophyll a (Chl a) and primary production, photosynthet-ically available radiation (PAR), as well as the related physico-oceanographic and zooplanktonic parameters were measured at five time-series observation stations representing sub-areas of the sea. Results obtained show that there were the marked features of spatial zonation of Chl a and primary production in the Bohai Sea. The values in the Laizhou Bay, the Liaodong Gulf and the Bohai Gulf were high and showed close relation with tidal fluctuations, i.e. high Chi a concentration occurred during high tide in the Laizhou Bay, and during low tide in the Liaodong Gulf and the Bohai Gulf. In the strait and the central region of the Bohai Sea, the values were relatively low and no relationship with tidal fluctuation could be found. Chlorophyll a concentration vertically decreased from surface to bottom in the Liaodong Gulf and the Bohai Gulf, while it increased in the Laizhou Bay, the strait and the central region of the Bohai Sea, and the highest value was encountered at the bottom. Size-fractionation results showed that nano - combining pico -plankton ( < 20 μm) predominated in phytoplankton communities of the Bohai Sea during late spring. The average contribution to total Chl a in each station ranged 76% -95 % (mean is 87 %). The contribution of net (> 20 μm), nano - (2- 20 fan) and picoplankton (< 2 μm) was 13% , 63% and 24% to total production, and 9% , 53% and 38% to total Chl a, respectively. It proved the importance of nano - and pico -plankton in phytoplankton communities in the Bohai Sea e-cosystems. In this paper the factors, such as light intensity and zooplankton grazing pressure, governing standing stock and production of phytoplankton in the Bohai Sea were also discussed.
基金the National Natural Science Foundation of China(21978128,91934302)the State Key Laboratory of Materials-oriented Chemical Engineering(ZK202006)is acknowledged.
文摘Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier.
基金supported by the National Key R&D Program of China (Grant no. 2019YFE0120900)the National Natural Science Foundation of China (Grant nos. 41941013, 41976230, 41206181, and 41976229)
文摘The size structure of phytoplankton has considerable effects on the energy flow and nutrient cycling in themarine ecosystem,and thus is important to marine food web and biological pump.However,its dynamics in the high-latitude Arctic Ocean,particularly ice-covered areas,remain poorly understood.We investigated size-fractionated chlorophyll a(Chl a)and related environmental parameters in the highly ice-covered Arctic Ocean during the summer of 2020,and analyzed the relationship between Chl adistribution and water mass through cluster analysis.Results showed that inorganic nutrients were typically depleted in the upper layer of the Canada Basin region,and that phytoplankton biomass was extremely low(mean=0.05±0.18 mg·m^(−3))in the near-surface layer(upper 25 m).More than 80%of Chl a values were<0.1 mg·m^(−3) in the water column(0-200 m),but high values appeared at the ice edge or in corresponding ice areas on the shelf.Additionally,the mean contribution of both nanoplankton(2-20μm)(41%)and picoplankton(<2μm)(40%)was significantly higher than that of microplankton(20-200μm)(19%).Notably,the typical subsurface chlorophyll maximum(0.1 mg·m^(−3))was found north of 80°N,where the concentration of sea ice reached approximately 100%.The Chl aprofile results showed that the deep chlorophyll maximum of total-,micro-,nano-,and picoplankton was located at depth of 40,39,41,and 38 m,respectively,indicating that nutrients are the primary factor limiting phytoplankton growth in the ice-covered Arctic Ocean during summer.These phenomena suggest that,despite the previous literatures pointing to significant light limitation under the Arctic ice,the primary limiting factor for phytoplankton in summer is still nutrient.
基金supported by the National Natural Science Foundation of China(22278110)China Postdoctoral Science Foundation(2022M720984)+1 种基金the Natural Science Foundation of Hebei Province of China(B2021202012)Tianjin Technical Innovation Guidance Special Project(20YDTPJC00630).
文摘Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.
基金a part of“Studies on Response and Feedback Action of Antarctica to the Global Change”,the State tackling key problems project(98-927-01-02)the National Natural Science Foundation of China(No.49876032).
文摘The investigation of size-fractionated chlorophyll a and primary productivity were carried out in three longitudinal sections (63°-69°12'S, 70°30'E, 73°E and 75(30'E) at December 18-26, 1998 and January 12-18, 1999 in Prydz Bay and its north sea area, Antarctica. The results showed that surface chlorophyll a concentration were 0. 16 -3. 99 μg dm-3. The high values of chlorophyll a concentration (more than 3.5 μg dm -3) were in Prydz Bay and in the west Ladies Bank. The average chlorophyll a concentration at sub-surface layer was higher than that at surface layer; its concentration at the deeper layers of 50 m decreased with increasing depth and that at 200 m depth was only 0. 01 -0. 95μg dm -3. The results of size-fractionated chlorophyll a showed that the contribution of the netplanktion to total chlorophyll a was 56% , those of the nanoplankton and the picoplankton were 24% and 20% respectively in the surveyed area. The potential primary productivity at the euphotic zone in the surveyed area was 0. 11 - 11. 67 mgC m-3h-1 and average value was 2.00 ±2.80 mgC m h . The in-situ productivity in the bay and the continental shelf was higher and that in the deep-sea area was lower. The assimilation number of photosynthesis was 1.53±1. 11 mgC/(mg Chi a · h). The results of size-fractionated primary productivity show that the contribution of the netplanktion to total productivity was 58% , those of the nanoplankton and the picoplankton were 26% and 16% respectively. The cell abundance of phytoplankton was 1. 6 × 103 - 164. 8 × 103 cell dm-3 in the surface water.
基金financed by the National Science Centre,Poland,under project No.2019/35/B/NZ8/01381 entitled"Impact of invasive tree species on ecosystem services:plant biodiversity,carbon and nitrogen cycling and climate regulation"by the Institute of Dendrology,Polish Academy of Sciences。
文摘Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees will likely be observed in the future.We aimed to assess the impact of these two neophytes,which differ in the biomass range and nitrogen-fixing abilities observed in Central European conditions,on the relative aboveground biomass increments of native oaks Qucrcus robur and Q.petraea and Scots pine Pinus sylvestris.We aimed to increase our understanding of the relationship between facilitation and competition between woody alien species and overstory native trees.We established 72 circular plots(0.05 ha)in two different forest habitat types and stands varying in age in western Poland.We chose plots with different abundances of the studied neophytes to determine how effects scaled along the quantitative invasion gradient.Furthermore,we collected growth cores of the studied native species,and we calculated aboveground biomass increments at the tree and stand levels.Then,we used generalized linear mixed-effects models to assess the impact of invasive species abundances on relative aboveground biomass increments of native tree species.We did not find a biologically or statistically significant impact of invasive R.pseudoacacia or P.serotina on the relative aboveground,biomass increments of native oaks and pines along the quantitative gradient of invader biomass or on the proportion of total stand biomass accounted for by invaders.The neophytes did not act as native tree growth stimulators but also did not compete with them for resources,which would escalate the negative impact of climate change on pines and oaks.The neophytes should not significantly modify the carbon sequestration capacity of the native species.Our work combines elements of the per capita effect of invasion with research on mixed forest management.
基金the National Key R&D Program of China(No.2022YFE0208100)the National Natural Science Foundation of China(No.5274316)+1 种基金the Key Research and Development Plan of Anhui Province,China(No.202210700037)the Major Science and Technology Project of Xinjiang Uygur Autonomous Region,China(No.2022A01003).
文摘The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.
基金supported by Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(Nos.2019R1A6C1010042 and 2021R1A6C103A427)the financial support from National Research Foundation of Korea(NRF),(2022R1A2C2010686,2022R1A4A3033528,2019H1D3A1A01071209,and 2021R1I1A1A01060380)
文摘Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired electrocatalysis of an H_(2)evolution reaction(HER)and furfural oxidation reaction(FOR).The FOR afforded a high furfural conversion(44.2%)with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte.The Pt-Co_(3)O_(4)electrode exhibited a small overpotential of 290 mV at 10 mA cm^(-2).As an anode and cathode in an electrolyzer system,the Pt-Co_(3)O_(4)electrocatalyst required only a small applied cell voltage of~1.83 V to deliver 10 mA cm^(-2),compared with that of the pure water electrolyzer(OER||HER,~1.99 V).This study simultaneously realized the integrated production of energy-saving H_(2)fuel at the cathode and 2-furoic acid at the anode.
文摘We determined whether the inclusion of 100 g/kg dry matter of grape pomace silage (GPS) and grape pomace bran (GPB) as substitutes for other traditional fiber sources in the diet of steers (Charolais x Nellore) would improve carcass characteristics, meat quality and composition, and shelf life. Twenty-four animals (248 ± 19.32 kg of initial body weight) were fed a high concentrate diet for 121 days. Carcass characteristics were measured, and the longissimus dorsi muscle was analyzed for fatty acid (FA) profile and composition. The meat was sliced and stored in air-permeable packages for 10 days. On each sampling day (d 1, 3, 7, and 10), oxidative stability, bacterial load, lipid and protein oxidation, and staining were analyzed. The experimental diets influenced the pH of cold carcasses only. The GPS group had a higher pH than the control. The GPS and GPB groups showed improved oxidant status (i.e., lower lipid peroxidation and concentrations of reactive oxygen species were in the meat of both groups than in control). On the first day of storage, the antioxidant enzyme glutathione S-transferase activity was more significant in the meat of the GPS and GPB groups than in the control. The bacterial loads in the meat were attenuated by GPS inclusion;there were lower total coliform counts and a trend toward lower counts for enterobacteria in the control group. The diets altered the FA profile of the meat;i.e., the GPB diet allowed for a more significant amount of the n-6 omegas in the meat, while the GPS diet showed a tendency for a more significant amount of n-6 and 9 omegas. Both diets (GPS and GPB) increased the amounts of long-chain FAs. The GPS diet decreased saturated FA levels. We conclude that the dietary treatments GPS and GPB are a promising alternative to maintain meat quality standards throughout in real-world retail conditions. These treatments gave rise to an improvement in the nutritional value of the meat due to the more significant amounts of FAs that improve human health.
基金This work was supported by the National Natural Science Foundation of China(Grant No.32201547).
文摘Quantifying the biomass of saplings in the regeneration component is critical for understanding biogeochemical processes of forest ecosystems.However,accurate allometric equations have yet to be developed in sufficient detail.To develop species-specific and generalized allometric equations,154 saplings of eight Fagaceae tree species in subtropical China’s evergreen broadleaved forests were collected.Three dendrometric variables,root collar diameter(d),height(h),and crown area(ca)were applied in the model by the weighted nonlinear seemingly unrelated regression method.Using only d as an input variable,the species-specific and generalized allometric equations estimated the aboveground biomass reasonably,with R _(adj)^(2) values generally>0.85.Adding h and/or ca improved the fitting of some biomass components to a certain extent.Generalized equations showed a relatively large coefficient of variation but comparable bias to species-specific equations.Only in the absence of species-specific equations at a given location are generalized equations for mixed species recommended.The developed regression equations can be used to accurately calculate the aboveground biomass of understory Fagaceae regeneration trees in China’s subtropical evergreen broadleaved forests.
基金supported by the National Natural Science Foundation of China (Grant No.32101475)Scarce and Quality Economic Forest Engineering Technology Research Center (Grant No.2022GCZX002)the Key Lab.of Biomass Energy and Material,Jiangsu Province (Grant No.JSBEM-S-202305).
文摘1 About the Special Issue Editor Qiaoguang Li is an associate professor and master’s supervisor in the Department of College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering.He received his PhD from Institute of Chemical Industry of Forestry Products,Chinese Academy of Forestry in 2018.He has been focusing his research on the chemical basis and application of natural resources.He has published nearly 30 international peer reviewed papers and applied for 10 patents.
基金funded by National Key Research and Development Program(2023YFD220080430&2017YFD0600404)。
文摘Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.
基金financially supported by the National Natural Science Foundation of China(22368014)the Guizhou Provincial S&T Project(ZK[2022]011,GCC[2023]011)+1 种基金the Guizhou Provincial Higher Education Institution Program(Qianjiaoji[2023]082)supported by RUDN University Strategic Academic Leadership Program。
文摘Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon bond cleavage of high selectivity,various functionalized molecules,such as organic acids,amides,esters,and nitriles,have great potential to be accessed from biomass.However,it has merely received finite concerns and interests in the biorefinery.This review first showcases the research progress on the electrocatalytic conversion of lipid/sugar-and lignin-derived molecules(e.g.,glycerol,mesoerythritol,xylose,glucose,1-phenylethanol,and cyclohexanol)into organic acids via specific carbon–carbon bond scission processes,with focus on disclosing reaction mechanisms,recognizing actual active species,and collecting feasible modification strategies.For the guidance of further extensive studies on biomass valorization,organic transformations via a variety of reactions,including decarboxylation,ring-opening,rearrangement,reductive hydrogenation,and carboxylation,are also disclosed for the construction of similar carbon skeletons/scaffolds.The remaining challenges,prospective applications,and future objectives in terms of biomass conversion are also proposed.This review is expected to provide references to develop renewed electrocatalytic carbon–carbon bond cleavage transformation paths/strategies for biomass upgrading.