In this study,the relationship of tropical cyclone(TC)size change rate(SCR),within 24 hours,with size,intensity,and intensity change rate(ICR)are explored over the western North Pacific.TC size is defined as the azimu...In this study,the relationship of tropical cyclone(TC)size change rate(SCR),within 24 hours,with size,intensity,and intensity change rate(ICR)are explored over the western North Pacific.TC size is defined as the azimuthally averaged radius of gale-force wind of 17 m s−1(R17)based on the Multiplatform Tropical Cyclone Surface Winds Analysis data.The majority of SCRs are mainly distributed in the range from−20 to 80 km d−1.The correlation coefficients between SCR and size(SCR-R17),intensity,and ICR(SCR-ICR)are−0.43,−0.12,and 0.25,respectively.The sensitivity of the SCR-R17 and SCR-ICR relationships to size,intensity,and evolution stage are further examined.Results show that the SCR-R17 relationship is more sensitive to variations of size and evolution stage than that of intensity.The relationship of SCR-ICR is largely modulated by the evolution stage.The correlation coefficient of SCR-ICR can increase from 0.25 to 0.40 when only considering the lifetime stages concurrently before and after the lifetime maximum size(LMS)and lifetime maximum intensity.This demonstrates that ICR is a potential factor in predicting SCR during these evolution stages.Besides,the TC size expansion(shrinkage)is more likely to occur for TCs with smaller(larger)size and weaker(stronger)intensity.The complexity of size change during a TC's lifetime can be attributed to the fact that shrinkage or expansion could occur both before and after LMS.展开更多
The effect of solidification cooling rate on the size and distribution of inclusions in 12%Cr stainless steel was investigated. A wide range of solidification cooling rates(from 0.05 to 106 K·s^-1) was achieved...The effect of solidification cooling rate on the size and distribution of inclusions in 12%Cr stainless steel was investigated. A wide range of solidification cooling rates(from 0.05 to 106 K·s^-1) was achieved using various solidification processes, including conventional casting, laser remelting, and melt spinning. The size and distribution of inclusions in the steel were observed and statistically collected. For comparison, mathematical models were used to calculate the sizes of inclusions at different solidification cooling rates. Both the statistical size determined from observations and that predicted from calculations tended to decrease with increasing cooling rate; however, the experimental and calculated results did not agree well with each other at excessively high or low cooling rate. The reasons for this discrepancy were theoretically analyzed. For the size distribution of inclusions, the effect of cooling rate on the number densities of large-sized(〉 2 μm) inclusions and small-sized(≤ 2 μm) inclusions were distinct. The number density of inclusions larger than 1 μm was not affected when the cooing rate was less than or equal to 6 K·s^-1 because inclusion precipitation was suppressed by the increased cooling rate.展开更多
Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to acces...Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.展开更多
The SEIR epidemic model studied here includes constant inflows of new susceptibles, exposeds, infectives, and recovereds. This model also incorporates a population size dependent contact rate and a disease-related dea...The SEIR epidemic model studied here includes constant inflows of new susceptibles, exposeds, infectives, and recovereds. This model also incorporates a population size dependent contact rate and a disease-related death. As the infected fraction cannot be eliminated from the population, this kind of model has only the unique endemic equilibrium that is globally asymptotically stable. Under the special case where the new members of immigration are all susceptible, the model considered here shows a threshold phenomenon and a sharp threshold has been obtained. In order to prove the global asymptotical stability of the endemic equilibrium, the authors introduce the change of variable, which can reduce our four-dimensional system to a three-dimensional asymptotical autonomous system with limit equation.展开更多
Based on the available experimental and compu- tational capabilities, a phenomenological approach has been proposed to formulate a hypersurface in both spatial and temporal domains to predict combined specimen size an...Based on the available experimental and compu- tational capabilities, a phenomenological approach has been proposed to formulate a hypersurface in both spatial and temporal domains to predict combined specimen size and load- ing rate effects on the material properties [ 1-2]. A systematic investigation is being performed to understand the combined size, rate and thermal effects on the properties and deformation patterns of representative materials with different nanos- tructures and under various types of loading conditions [3- 16]. The recent study on the single crystal copper response to impact loading has revealed the size-dependence of the Hugoniot curve. In this paper, the "inverse Hall-Petch" behavior as observed in the impact response of single crystal copper, which has not been reported in the open literature, is investigated by performing molecular dynamics simulations of the response of copper nanobeam targets subjected to impacts by copper nanobeam flyers with different impact velocities. It appears from the preliminary results that the "inverse Hall-Petch" behavior in single crystal copper is mainly due to the formation and evolution of disordered atoms and the interaction between ordered and disordered atoms, as compared with the physics behind the "inverse Hall-Petch"behavior as observed in nanocrystalline materials展开更多
Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performan...Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performances are extremely different. In order to study the performance of the ball mill with regular polygon angle-spiral liners(RPASLs), experimental and numerical studies on three types of RPASLs, including regular quadrilateral, pentagonal and hexagonal, are carried out. For the fine product of desired size, two critical parameters are analyzed: the energy input to the mill per unit mass of the fine product, E*, and the rate of production of the fine product, F*. Results show that the optimal structure of RPASLs is Quadrilateral ASL with an assembled angle of 50°. Under this condition, the specific energy consumption E* has the minimum value of 303 J per fine product and the production rate F* has the maximum value of 0.323. The production rate F* in the experimental result is consistent with the specific collision energy intensity to total collision energy intensity ratio Es/Et in the simulation. The relations between the production rate F* and the specific energy consumption E* with collision energy intensity Es and Et are obtained. The simulation result reveals the essential reason for the experimental phenomenon and correlates the mill performance parameter to the collision energy between balls, which could guide the practical application for Quadrilateral ASL.展开更多
Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 june to 19 July 2006. We fi...Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 june to 19 July 2006. We first report the pollution level, diurnal variation of particle concentration in different size ranges and then introduce the characteristics of the particle formation processes, to show that the number concentration of ultrafine particles was lower than the values measured in other urban or suburban areas in previous studies, However, the fraction of ultrafine particles in total aerosol number concentration was found to be much higher. Furthermore, sharp increase of ultrafine particle concentration was frequently observed at noon. An examination of the diurnal pattern suggests that the burst of the ultrafine particles was mainly due to nucleation process. During the 25-day observation, new particle formation (NPF) from homogeneous nucleation was observed during 33% of the study period. The average growth rate of the newly formed particles was 4.4 nm/h, varying from 1.3 to 16,9 nm/h. The needed concentration of condensable vapor was 6.1 × 10^7 cm-3, and its source rate was 1.1× 10^6 cm-3 s 1. Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rate was 68.3%.展开更多
基金This study was supported by the National Natural Science Foundation of China[grant numbers 41975071 and 41775063].
文摘In this study,the relationship of tropical cyclone(TC)size change rate(SCR),within 24 hours,with size,intensity,and intensity change rate(ICR)are explored over the western North Pacific.TC size is defined as the azimuthally averaged radius of gale-force wind of 17 m s−1(R17)based on the Multiplatform Tropical Cyclone Surface Winds Analysis data.The majority of SCRs are mainly distributed in the range from−20 to 80 km d−1.The correlation coefficients between SCR and size(SCR-R17),intensity,and ICR(SCR-ICR)are−0.43,−0.12,and 0.25,respectively.The sensitivity of the SCR-R17 and SCR-ICR relationships to size,intensity,and evolution stage are further examined.Results show that the SCR-R17 relationship is more sensitive to variations of size and evolution stage than that of intensity.The relationship of SCR-ICR is largely modulated by the evolution stage.The correlation coefficient of SCR-ICR can increase from 0.25 to 0.40 when only considering the lifetime stages concurrently before and after the lifetime maximum size(LMS)and lifetime maximum intensity.This demonstrates that ICR is a potential factor in predicting SCR during these evolution stages.Besides,the TC size expansion(shrinkage)is more likely to occur for TCs with smaller(larger)size and weaker(stronger)intensity.The complexity of size change during a TC's lifetime can be attributed to the fact that shrinkage or expansion could occur both before and after LMS.
基金financially supported by the National Basic Research Program of China (No. 2011CB012900)
文摘The effect of solidification cooling rate on the size and distribution of inclusions in 12%Cr stainless steel was investigated. A wide range of solidification cooling rates(from 0.05 to 106 K·s^-1) was achieved using various solidification processes, including conventional casting, laser remelting, and melt spinning. The size and distribution of inclusions in the steel were observed and statistically collected. For comparison, mathematical models were used to calculate the sizes of inclusions at different solidification cooling rates. Both the statistical size determined from observations and that predicted from calculations tended to decrease with increasing cooling rate; however, the experimental and calculated results did not agree well with each other at excessively high or low cooling rate. The reasons for this discrepancy were theoretically analyzed. For the size distribution of inclusions, the effect of cooling rate on the number densities of large-sized(〉 2 μm) inclusions and small-sized(≤ 2 μm) inclusions were distinct. The number density of inclusions larger than 1 μm was not affected when the cooing rate was less than or equal to 6 K·s^-1 because inclusion precipitation was suppressed by the increased cooling rate.
文摘Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.
基金This research is supported by the NNSF of China (19971066)
文摘The SEIR epidemic model studied here includes constant inflows of new susceptibles, exposeds, infectives, and recovereds. This model also incorporates a population size dependent contact rate and a disease-related death. As the infected fraction cannot be eliminated from the population, this kind of model has only the unique endemic equilibrium that is globally asymptotically stable. Under the special case where the new members of immigration are all susceptible, the model considered here shows a threshold phenomenon and a sharp threshold has been obtained. In order to prove the global asymptotical stability of the endemic equilibrium, the authors introduce the change of variable, which can reduce our four-dimensional system to a three-dimensional asymptotical autonomous system with limit equation.
基金supported in part by the U.S.Defense Threat Reduction Agency(HDTRA1-10-1-0022)the National Key Basic Research Special Foundation of China(2010CB832704)+2 种基金the National Natural Science Foundation of China(10721062)the 111 Joint Program by the Chinese Ministry of EducationState Administration of Foreign Experts Affairs(B08014)
文摘Based on the available experimental and compu- tational capabilities, a phenomenological approach has been proposed to formulate a hypersurface in both spatial and temporal domains to predict combined specimen size and load- ing rate effects on the material properties [ 1-2]. A systematic investigation is being performed to understand the combined size, rate and thermal effects on the properties and deformation patterns of representative materials with different nanos- tructures and under various types of loading conditions [3- 16]. The recent study on the single crystal copper response to impact loading has revealed the size-dependence of the Hugoniot curve. In this paper, the "inverse Hall-Petch" behavior as observed in the impact response of single crystal copper, which has not been reported in the open literature, is investigated by performing molecular dynamics simulations of the response of copper nanobeam targets subjected to impacts by copper nanobeam flyers with different impact velocities. It appears from the preliminary results that the "inverse Hall-Petch" behavior in single crystal copper is mainly due to the formation and evolution of disordered atoms and the interaction between ordered and disordered atoms, as compared with the physics behind the "inverse Hall-Petch"behavior as observed in nanocrystalline materials
基金Supported by National Natural Science Foundation of China(Grant Nos.51675484,51275474,51505424)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LZ12E05002,LY15E050019)
文摘Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performances are extremely different. In order to study the performance of the ball mill with regular polygon angle-spiral liners(RPASLs), experimental and numerical studies on three types of RPASLs, including regular quadrilateral, pentagonal and hexagonal, are carried out. For the fine product of desired size, two critical parameters are analyzed: the energy input to the mill per unit mass of the fine product, E*, and the rate of production of the fine product, F*. Results show that the optimal structure of RPASLs is Quadrilateral ASL with an assembled angle of 50°. Under this condition, the specific energy consumption E* has the minimum value of 303 J per fine product and the production rate F* has the maximum value of 0.323. The production rate F* in the experimental result is consistent with the specific collision energy intensity to total collision energy intensity ratio Es/Et in the simulation. The relations between the production rate F* and the specific energy consumption E* with collision energy intensity Es and Et are obtained. The simulation result reveals the essential reason for the experimental phenomenon and correlates the mill performance parameter to the collision energy between balls, which could guide the practical application for Quadrilateral ASL.
基金funded by the National Basic Research Program of China (2005CB422203, 2005CB422208)National Department Public Benefit Research Foundation (No.201009001)National Natural Science Foundation of China(Grant No. 41005065)
文摘Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 june to 19 July 2006. We first report the pollution level, diurnal variation of particle concentration in different size ranges and then introduce the characteristics of the particle formation processes, to show that the number concentration of ultrafine particles was lower than the values measured in other urban or suburban areas in previous studies, However, the fraction of ultrafine particles in total aerosol number concentration was found to be much higher. Furthermore, sharp increase of ultrafine particle concentration was frequently observed at noon. An examination of the diurnal pattern suggests that the burst of the ultrafine particles was mainly due to nucleation process. During the 25-day observation, new particle formation (NPF) from homogeneous nucleation was observed during 33% of the study period. The average growth rate of the newly formed particles was 4.4 nm/h, varying from 1.3 to 16,9 nm/h. The needed concentration of condensable vapor was 6.1 × 10^7 cm-3, and its source rate was 1.1× 10^6 cm-3 s 1. Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rate was 68.3%.