Tunneling in complex rock mass conditions is a challenging task, especially in the Himalayan terrain, where a number of unpredicted conditions are reported. Rock joint parameters such as persistence, spacing and shear...Tunneling in complex rock mass conditions is a challenging task, especially in the Himalayan terrain, where a number of unpredicted conditions are reported. Rock joint parameters such as persistence, spacing and shear strength are the factors which significantly modify the working environments in the vicinity of the openings. Therefore, a detailed tunnel stability assessment is critically important based on the field data collection on the excavated tunnel's face. In this context, intact as well as rock mass strength and deformation modulus is obtained from laboratory tests for each rock type encountered in the study area. Finite element method(FEM) is used for stability analysis purpose by parametrically varying rock joint persistence, spacing and shear strength parameters, until the condition of overbreak is reached. Another case of marginally stable condition is also obtained based on the same parameters. The results show that stability of tunnels is highly influenced by these parameters and the size of overbreak is controlled by joint persistence and spacing. Garnetiferous schist and slate characterized using high persistence show the development of large plastic zones but small block size, depending upon joint spacing; whereas low persistence, low spacing and low shear strength in marble and quartzite create rock block fall condition.展开更多
The effect of cooling rate on the microstructure of ZA48 alloy was investigated. The alloy was prepared using a relatively simple technique, i e, rapid cooling of the melt in a steel wedge mould. The dependence of mic...The effect of cooling rate on the microstructure of ZA48 alloy was investigated. The alloy was prepared using a relatively simple technique, i e, rapid cooling of the melt in a steel wedge mould. The dependence of microstructure on the cooling rate (about 40 to 10^3 K/s) was determined by the secondary dendrite arm space size measurement, optical microscopy(OM), and transmission electron microscopy (TEM). It is found that the matrix structure over a large cooling rate is composed of α-Al dendrite and eutectoid (α+η), the size of α-Al dendrite decreases with increasing cooling rate. The relationship between the cooling rate and the secondary dendrite arm space size has been established. TEM shows that a large number of small and dispersed precipitations can be seen in the primary α phase of tip region. Electron diffraction pattern shows that the precipitate phase is Zn3Mg2 phase.展开更多
The effect of cooling rate and austenitizing condition on the mechanical properties of high carbon steel (SWRH82B) has beeninvestigated. Specimens were made of high carbon steel rod and heat-treated by Gleeble-2000 to...The effect of cooling rate and austenitizing condition on the mechanical properties of high carbon steel (SWRH82B) has beeninvestigated. Specimens were made of high carbon steel rod and heat-treated by Gleeble-2000 to produce a wide variation in prior austenite size. Different cooling rates were carried out, and then pearlite interlaminar spacing and mechanical properties were measured andtested respectively. According to the results, it could be found that under the continuous cooling with the increase of cooling rate, tensilestrength greatly increases and reduction in area exhibits a slightly increase for an equivalent value of prior austenite grain size. Whenprior austenite size increases, reduction in area decreases, and tensile strength increases slightly for an equivalent value of pearlite interlaminar spacing. It is concluded that prior austenite size primarily controls ductility and pearlite interlaminar spacing controls tensilestrength. Mathematical formulae are given for these relations.展开更多
This study presents results from a vegetation-induced flow experimental study which investigates 3-D turbulence structure profiles,including Reynolds stress,turbulence intensity and bursting analysis of open channel f...This study presents results from a vegetation-induced flow experimental study which investigates 3-D turbulence structure profiles,including Reynolds stress,turbulence intensity and bursting analysis of open channel flow.Different vegetation densities have been built between the adjacent vegetations,and the flow measurements are taken using acoustic Doppler velocimeter(ADV)at the locations within and downstream of the vegetation panel.Three different tests are conducted,where the first test has compact vegetations,while the second and the third tests have open spaces created by one and two empty vegetation slots within the vegetated field.Observation reveals that over 10%of eddies size is generated within the vegetated zone of compact vegetations as compared with the fewer vegetations.Significant turbulence structures variation is also observed at the points in the non-vegetated row.The findings from burst-cycle analysis show that the sweep and outward interaction events are dominant,where they further increase away from the bed.The effect of vegetation on the turbulent burst cycle is mostly obvious up to approximately two-third of vegetation height where this phenomenon is also observed for most other turbulent structure.展开更多
基金The financial support provided by the Hydro China Scientific Research Project (GW-KJ-2013-11)
文摘Tunneling in complex rock mass conditions is a challenging task, especially in the Himalayan terrain, where a number of unpredicted conditions are reported. Rock joint parameters such as persistence, spacing and shear strength are the factors which significantly modify the working environments in the vicinity of the openings. Therefore, a detailed tunnel stability assessment is critically important based on the field data collection on the excavated tunnel's face. In this context, intact as well as rock mass strength and deformation modulus is obtained from laboratory tests for each rock type encountered in the study area. Finite element method(FEM) is used for stability analysis purpose by parametrically varying rock joint persistence, spacing and shear strength parameters, until the condition of overbreak is reached. Another case of marginally stable condition is also obtained based on the same parameters. The results show that stability of tunnels is highly influenced by these parameters and the size of overbreak is controlled by joint persistence and spacing. Garnetiferous schist and slate characterized using high persistence show the development of large plastic zones but small block size, depending upon joint spacing; whereas low persistence, low spacing and low shear strength in marble and quartzite create rock block fall condition.
文摘The effect of cooling rate on the microstructure of ZA48 alloy was investigated. The alloy was prepared using a relatively simple technique, i e, rapid cooling of the melt in a steel wedge mould. The dependence of microstructure on the cooling rate (about 40 to 10^3 K/s) was determined by the secondary dendrite arm space size measurement, optical microscopy(OM), and transmission electron microscopy (TEM). It is found that the matrix structure over a large cooling rate is composed of α-Al dendrite and eutectoid (α+η), the size of α-Al dendrite decreases with increasing cooling rate. The relationship between the cooling rate and the secondary dendrite arm space size has been established. TEM shows that a large number of small and dispersed precipitations can be seen in the primary α phase of tip region. Electron diffraction pattern shows that the precipitate phase is Zn3Mg2 phase.
文摘The effect of cooling rate and austenitizing condition on the mechanical properties of high carbon steel (SWRH82B) has beeninvestigated. Specimens were made of high carbon steel rod and heat-treated by Gleeble-2000 to produce a wide variation in prior austenite size. Different cooling rates were carried out, and then pearlite interlaminar spacing and mechanical properties were measured andtested respectively. According to the results, it could be found that under the continuous cooling with the increase of cooling rate, tensilestrength greatly increases and reduction in area exhibits a slightly increase for an equivalent value of prior austenite grain size. Whenprior austenite size increases, reduction in area decreases, and tensile strength increases slightly for an equivalent value of pearlite interlaminar spacing. It is concluded that prior austenite size primarily controls ductility and pearlite interlaminar spacing controls tensilestrength. Mathematical formulae are given for these relations.
文摘This study presents results from a vegetation-induced flow experimental study which investigates 3-D turbulence structure profiles,including Reynolds stress,turbulence intensity and bursting analysis of open channel flow.Different vegetation densities have been built between the adjacent vegetations,and the flow measurements are taken using acoustic Doppler velocimeter(ADV)at the locations within and downstream of the vegetation panel.Three different tests are conducted,where the first test has compact vegetations,while the second and the third tests have open spaces created by one and two empty vegetation slots within the vegetated field.Observation reveals that over 10%of eddies size is generated within the vegetated zone of compact vegetations as compared with the fewer vegetations.Significant turbulence structures variation is also observed at the points in the non-vegetated row.The findings from burst-cycle analysis show that the sweep and outward interaction events are dominant,where they further increase away from the bed.The effect of vegetation on the turbulent burst cycle is mostly obvious up to approximately two-third of vegetation height where this phenomenon is also observed for most other turbulent structure.